Abstract:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently monitor progress towards one or more control goals under one or more constraints in order to achieve control that satisfies potentially conflicting goals. An intelligent controller may alter aspects of control, dynamically, while the control is being carried out, in order to ensure that goals are obtained and a balance is achieved between potentially conflicting goals. The intelligent controller uses various types of information to determine an initial control strategy as well as to dynamically adjust the control strategy as the control is being carried out.
Abstract:
Embodiments of the invention describe thermostats that use model predictive controls and related methods. A method of controlling a thermostat using a model predictive control may involve determining a parameterized model. The parameterized model may be used to predicted ambient temperature values for an enclosure. A set of radiant heating system control strategies may be selected for evaluation to determine an optimal control strategy from the set of control strategies. To determine the optimal control strategy, a predictive algorithm may be executed, in which each control strategy is applied to the parameterized model to predict an ambient temperature trajectory and each ambient temperature trajectory is processed in view of a predetermined assessment function. Processing the ambient temperature trajectory in this manner may involve minimizing a cost value associated with the ambient temperature trajectory. The radiant heating system may subsequently be controlled according to the selected optimal control strategy.
Abstract:
Embodiments of the invention describe thermostats that use model predictive controls and related methods. A method of controlling a thermostat using a model predictive control may involve determining a parameterized model. The parameterized model may be used to predicted ambient temperature values for an enclosure. A set of radiant heating system control strategies may be selected for evaluation to determine an optimal control strategy from the set of control strategies. To determine the optimal control strategy, a predictive algorithm may be executed, in which each control strategy is applied to the parameterized model to predict an ambient temperature trajectory and each ambient temperature trajectory is processed in view of a predetermined assessment function. Processing the ambient temperature trajectory in this manner may involve minimizing a cost value associated with the ambient temperature trajectory. The radiant heating system may subsequently be controlled according to the selected optimal control strategy.
Abstract:
Techniques for determining and using a thermodynamic model that characterizes a thermodynamic response of an enclosure conditioned by an HVAC system are disclosed. To determine a thermodynamic model, temperature information when the HVAC system operates in a first state may first be received. A response interval may then be determined where the response interval indicates an estimated time between when the HVAC system begins operating in the first state and when the temperature within the enclosure begins to change in a direction associated with the first state. Weighting factors corresponding to basis functions may then be determined, where the weighted basis functions characterize the temperature trajectory of the enclosure in response to the HVAC system operating in the first state. The basis functions may include a first basis function that is evaluated from a time that the HVAC system begins operating in the first state until a time when the response interval ends, and a second basis function that is evaluated beginning at the time when the response interval ends.
Abstract:
Apparatus, systems, methods, and related computer program products for optimizing a schedule of setpoint temperatures used in the control of an HVAC system. The systems disclosed include an energy management system in operation with an intelligent, network-connected thermostat located at a structure. The thermostat includes a schedule of setpoint temperatures that is used to control an HVAC system associated with a structure in which the thermostat is located. The schedule of setpoint temperatures is continually adjusted by small, unnoticeable amounts so that the schedule migrates from the original schedule to an optimal schedule. The optimal schedule may be optimal in terms of energy consumption or some other terms.
Abstract:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently monitor progress towards one or more control goals under one or more constraints in order to achieve control that satisfies potentially conflicting goals. An intelligent controller may alter aspects of control, dynamically, while the control is being carried out, in order to ensure that goals are obtained and a balance is achieved between potentially conflicting goals. The intelligent controller uses various types of information to determine an initial control strategy as well as to dynamically adjust the control strategy as the control is being carried out.
Abstract:
The current application is directed to intelligent controllers that use sensor output and electronically stored information to determine whether or not one or more types of entities are present within an area, volume, or environment monitored by the intelligent controllers. The intelligent controllers select operational modes and/or modify control schedules with respect to the presence and absence of the one or more entities. The intelligent controllers selectively carry out scheduled control operations during periods of time when one or more types of entities are determined not to be in a controlled environment.
Abstract:
The current application is directed to intelligent controllers that use sensor output and electronically stored information, including one or more of electronically stored rules, parameters, and instructions, to determine whether or not one or more types of entities are present within an area, volume, or environment monitored by the intelligent controllers. The intelligent controllers select operational modes and modify control schedules with respect to the presence and absence of the one or more entities. The intelligent controllers employ feedback information to continuously adjust the electronically stored parameters and rules in order to minimize the number of incorrect inferences with respect to the presence or absence of the one or more entities and in order to maximize the efficiency by which various types of systems controlled by the intelligent controllers carry out selected operational modes.
Abstract:
The current application is directed to intelligent controllers that use sensor output and electronically stored information, including one or more of electronically stored rules, parameters, and instructions, to determine whether or not one or more types of entities are present within an area, volume, or environment monitored by the intelligent controllers. The intelligent controllers select operational modes and modify control schedules with respect to the presence and absence of the one or more entities. The intelligent controllers employ feedback information to continuously adjust the electronically stored parameters and rules in order to minimize the number of incorrect inferences with respect to the presence or absence of the one or more entities and in order to maximize the efficiency by which various types of systems controlled by the intelligent controllers carry out selected operational modes.