Abstract:
A semiconductor laser device can include an insulating single crystal SiC having a first surface, a second surface, and micropipes having openings in the first surface and the second surface. A conductive base can be provided on a side of the first surface of the single crystal SiC, and a semiconductor laser element can be provided on a side of the second surface of the single crystal SiC. An insulating member can be formed in the micropipes.
Abstract:
A method for manufacturing a wavelength conversion member, includes: providing a wavelength conversion layer having a phosphor-containing portion and a light reflecting portion surrounding the phosphor-containing portion, and the wavelength conversion layer having an upper surface, a bottom surface and at least one side surface; forming a light-blocking film on the upper surface of the wavelength conversion layer; and removing a part of the light-blocking film by laser processing to expose at least a part of the phosphor-containing portion from the light-blocking film.
Abstract:
A method for producing a semiconductor laser element includes providing a semiconductor wafer comprising: a nitride semiconductor substrate, and a semiconductor stack located on the substrate, the semiconductor stack including a plurality of nitride semiconductor layers; forming in the substrate a fissure starting point and a fissure extending from the fissure starting point; forming a cleavage reference portion extending parallel to a cleavage plane of the semiconductor wafer as estimated from a plan view shape of the fissure; and cleaving the semiconductor wafer parallel to the cleavage reference portion to thereby obtain resonator end faces.
Abstract:
A semiconductor laser device can include an insulating single crystal SiC having a first surface, a second surface, and micropipes having openings in the first surface and the second surface. A conductive base can be provided on a side of the first surface of the single crystal SiC, and a semiconductor laser element can be provided on a side of the second surface of the single crystal SiC. An insulating member can be formed in the micropipes.