Abstract:
In a method for manufacturing a light-emitting element, a second irradiation process includes forming a first modified region at a first distance from a second surface in a thickness direction of a sapphire substrate, forming a second modified region at a second distance from the second surface in the thickness direction, the second distance being less than the first distance, the second modified region being shifted in a first direction from the first modified region, and forming a third modified region at a third distance from the second surface in the thickness direction, the third distance being less than the second distance, the third modified region overlapping the first modified region in a top-view. In the thickness direction of the sapphire substrate, a greater number of modified regions that include second modified portions are formed than modified regions that include first modified portions.
Abstract:
A method of manufacturing a semiconductor light emitting element includes preparing a semiconductor stacked layer structure by stacking a first semiconductor layer and a second semiconductor layer in this order, forming a second electrode and an insulating layer in this order on the second semiconductor layer, exposing the first semiconductor layer by removing a part of the second semiconductor layer, forming a first electrode by forming a metal layer on the exposed first semiconductor layer and the insulating layer and flattening a surface of the metal layer, forming a first electrode-side bonding layer having a top layer made of Au on the first electrode, preparing a support substrate including a support substrate-side bonding layer having a top surface made of Au, and bonding the first electrode-side bonding layer and the support substrate-side bonding layer.
Abstract:
A method of manufacturing a light-emitting device includes: providing a substrate having a first surface and a second surface opposite to the first surface; forming, on or above the first surface of the substrate, a semiconductor structure comprising a light-emitting layer; forming a crack inside the substrate, the crack reaching the first surface of the substrate; disposing a wavelength conversion layer on the second surface of the substrate; forming a first recess in the wavelength conversion layer by removing a first portion of the wavelength conversion layer, the first portion overlapping with the crack when viewed in a direction from the wavelength conversion layer toward the semiconductor structure, and leaving a second portion of the wavelength conversion layer between the first recess and the semiconductor structure; and cleaving the second portion along the crack.