Abstract:
A transmission apparatus includes a control unit for carrying out processing to secure a resource for a standby system path in response to detection of a sign of failure in an active system path.
Abstract:
A transport apparatus includes: a client signal transceiving unit which transceives a client signal; a line signal transceiving unit which performs electric-optic conversion on a line signal to be transmitted, transmits an optical line signal, performs optic-electric conversion on a received line signal, and outputs an electrical line signal; and a plurality of signal processing units which perform signal processing on the client signal to generate the line signal to be transmitted and perform signal processing on the electrical line signal to generate the client signal. Each of the plurality of signal processing units includes a signal transceiving unit which performs transfer of a branched signal obtained by branching a signal to be transmitted and a merged signal obtained by merging received signals with another signal processing unit, and the signal transceiving unit of each of the plurality of signal processing units and the signal transceiving unit of the other signal processing unit are coupled via an inter-chip wiring.
Abstract:
An output port switching unit that connects to a first optical transmission path, a second optical transmission path, and the connection information processor, and sets a destination of the first optical transmission path as the connection information processor in an initial state. A controller that transmits transmission mode information indicating a transmission mode identified based on connection information of the first optical transmission path acquired from an optical signal transmitted by an optical transceiver provided in an optical communicator that the connection information processor connects to the first optical transmission path, connection request data included in the optical signal and transmitted by the optical transceiver, and transmission path information of the second optical transmission path to the optical transceiver through the first optical transmission path. The output port switching unit performs switching processing of switching a destination of the first optical transmission path from the connection information processor to the second optical transmission path after the controller transmits the transmission mode information.
Abstract:
A transmission apparatus performs communication with a transmission side transmission apparatus via a transmission path of an active system and a transmission path of a standby system. The transmission apparatus includes: a memory configured to have a capacity that is as large as delay caused due to a maximum path difference between the transmission path of the active system and the transmission path of the standby system is allowable; and a memory connection control unit configured to switch connection of the memory and cause a signal of the transmission path of the active system or the transmission path of the standby system to be accumulated in the memory.
Abstract:
There is provided an optical transmission system in which a plurality of optical transmission and reception apparatuses perform 1-to-N transmission and reception of optical signals (N is an integer equal to or greater than 1), the optical transmission system being configured to select a communication condition that includes at least a modulation scheme or a baud rate and is a communication condition when each of the optical transmission and reception apparatuses performs transmission and reception in accordance with a transmission line condition that is between any one first optical transmission and reception apparatus and each of second optical transmission and reception apparatuses, which are N grounds, other than the first optical transmission and reception apparatus.
Abstract:
A framer in a transmission device allocates plural optical channel time slots to a plurality of logical prioritized paths. It allocates received client signals to the allocated time slots, and transmits the client signals by a plurality of optical subcarriers that use a plurality of optical wavelengths corresponding to the plurality of time slots. The framer includes: a time slot allocation unit that, in a case where an optical wavelength corresponding to a time slot allocated to a logical path having a high transmission priority is not used, allocates at least one of the plurality of time slots to the logical path having the high transmission priority while the time slot corresponding to the unused optical wavelength is avoided, to change the time slot allocated to the logical path having the high transmission priority.
Abstract:
A multilane transmission device that transmits data frames by using a plurality of lanes, comprising: a data frame allocating unit that allocates data frames based on a transmission destination; a flow group information sequence information adding unit that adds flow group information indicating a flow group corresponding to a transmission source and transmission destinations and sequence information indicating a sequence of the data frames to the data frames allocated based on each transmission destination by the data frame allocating unit; and a lane selecting/outputting unit that transmits the data frames having the respective flow group information and the respective sequence information added thereto by the flow group information sequence information adding unit to the transmission destinations by using one or more lanes corresponding to the respective flow group information.
Abstract:
A transmission apparatus includes a first communication unit, a second communication unit, a detection unit, a control unit, and a selection unit. The first communication unit uses a first path for communication, when electric power is supplied. The second communication unit uses a second path for communication, when electric power is supplied. The detection unit detects a fault predictive sign. The control unit supplies no electric power to the second communication unit when the detection unit does not detect the fault predictive sign. The control unit starts supplying electric power to the second communication unit and performs normality confirmation of the second path when the detection unit detects the fault predictive sign, before switching from the first path to the second path. The selection unit selects and outputs, when the first communication unit and the second communication unit have received signals, either the signal received by the first communication unit or the signal received by the second communication unit.
Abstract:
A first reception processing unit performs a process of receiving a first signal transmitted on a first transmission line, a second reception processing unit performs a process of receiving a second signal transmitted on a second transmission line, and an output speed control unit controls output speeds of the first signal and the second signal subjected to the reception process. A system switching unit selects and outputs the first signal or the second signal subjected to a reception process, and an output processing unit performs a process for output to another apparatus on the output from the system switching unit. A reception side clock output unit outputs a clock signal giving a processing timing of each process, and a clock frequency control unit adjusts a frequency of the clock signal giving the processing timing to the output processing unit. A frequency adjustment range calculation unit calculates an adjustment range of the frequency based on frequency deviation accuracy of the reception side clock output unit, frequency deviation accuracy of a transmission side clock output unit that outputs a clock signal giving a processing timing to a transmission process at a transmission apparatus on the transmission side, and a prescribed value of a frequency deviation.
Abstract:
There is provided a tray which is connected to a plurality of transmitters that multicarrier-transmit a plurality of parallel signals by optical subcarriers. The framer selects time slots to be allocated to a path to be accommodated such that the number of optical subcarriers corresponding to the time slots satisfies a predetermined condition on the basis of empty time slots which are specified by path accommodation information indicating a correspondence between paths allocated to a client signal and time slots in a signal frame and the optical subcarriers corresponding to the empty time slots indicated by time slot information indicating a correspondence between the time slots and the optical subcarriers, and sets the selected time slot in the path accommodation information. The framer sets a client signal to the time slots on the basis of the path accommodation information.