Abstract:
A method of producing a hot-dip Zn alloy-plated steel sheet includes: dipping a base steel sheet in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on a surface of the base steel sheet; and contacting an aqueous solution containing a water-soluble corrosion inhibitor with a surface of the hot-dip Zn alloy plating layer to cool the base steel sheet and the hot-dip Zn alloy plating layer having a raised temperature through formation of the hot-dip Zn alloy plating layer. A temperature of the surface of the hot-dip Zn alloy plating layer when the aqueous solution is to be contacted with the surface of the hot-dip Zn alloy plating layer is equal to or more than 100° C. and equal to or less than a solidifying point of the plating layer. The aqueous solution containing the water-soluble corrosion inhibitor satisfies the Equation [{(Z0−Z1)/Z0}100≥20].
Abstract:
A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing a polyatomic ion including Si4+ and/or a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. All of the aqueous solution coating the surface of the hot-dip Zn alloy plating layer is removed with a squeeze roller. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of atom of Si and Cr. A surface temperature of the hot-dip Zn alloy plating layer when the aqueous solution is contacted with the surface of the hot-dip Zn alloy plating layer is 100° C. or above and equal to or less than a solidifying point of the plating layer.
Abstract:
The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 0.1-22.0 mass %, inclusive, and containing Mg in the amount of 0.1-1.5 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.
Abstract:
The present disclosure relates to a chemically treated zinc-based plated steel sheet that is superior in weather resistance, water resistance, blackening resistance and film adhesion. A chemical conversion film having a thickness 0.5-10 μm is formed by coating and drying a chemical treatment solution on a surface of an aluminum-containing zinc-based alloy plated steel sheet. The chemical treatment solution contains a fluororesin containing 0.05-5% by weight of a hydrophilic functional group selected from the group consisting of a carboxyl group and a sulfonic acid group and 7-20% by weight of a fluorine atom, the fluororesin in which a number-average molecular weight is 1,000-2,000,000, and an oxoate, a fluoride, a hydroxide, an organic salt, a carbonate or a peroxygenated salt of a group 4A metal.
Abstract:
The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 1.0-22.0 mass %, inclusive, and containing Mg in the amount of 1.5-10.0 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.
Abstract:
The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 1.0-22.0 mass %, inclusive, and containing Mg in the amount of 1.5-10.0 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.
Abstract:
A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing one of or two or more of polyatomic ions selected from the group consisting of a polyatomic ion including V5+, a polyatomic ion including Si4+, and a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of one of or two or more of atoms selected from the group consisting of V, Si, and Cr.
Abstract:
A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing one of or two or more of polyatomic ions selected from the group consisting of a polyatomic ion including V5+, a polyatomic ion including Si4+, and a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of one of or two or more of atoms selected from the group consisting of V, Si, and Cr.
Abstract:
Provided is a method for obtaining a chemical conversion coating-treated zinc-aluminum-magnesium alloy-plated steel sheet having extremely excellent in corrosion resistance and adhesiveness to a resin coating film. The method is for treating the surface of a zinc-aluminum-magnesium alloy-plated steel sheet with a metal surface treatment agent, in which the metal surface treatment agent contains a compound (A) having a zirconyl ([Zr═O]2+) structure, a vanadium compound (B), a titanium fluorocomplex compound (C), an organic phosphorus compound (Da) containing a phosphoric acid group and/or a phosphonic acid group, an inorganic phosphorus compound (Db), a specific aqueous acrylic resin (E), and an oxazoline group-containing polymer (F) as a curing agent, each in a predetermined amount, and the pH of the metal surface treatment agent is 3 to 6.
Abstract:
The present invention pertains to a method for producing a black-plated steel sheet capable of being blackened in a short amount of time, and exhibiting an excellent ability to maintain a black appearance after processing. As an original sheet, the sheet used is a Zn-plating steel sheet which contains molten Al and Mg and has a Zn-plating layer containing molten Al and Mg, containing Al in the amount of 0.1-22.0 mass %, inclusive, and containing Mg in the amount of 0.1-1.5 mass %, inclusive. The plating layer is blackened by causing the molten-plating steel sheet to contact water vapor inside a tightly sealed container. When doing so, the concentration of oxygen inside the tightly sealed container is 13% or less.