Abstract:
Various communication systems may benefit from differentiated quality of service management. For example, specific applications run on a user equipment in a 5G radio access network may benefit from the flexible differentiated quality of service management. A method includes determining a service flow setup, and mapping traffic through the service flow by a common convergence sublayer entity to at least one radio convergence sublayer entity. The method also includes controlling the traffic through the service flow.
Abstract:
An apparatus and method are provided. A request is received from a first user equipment to schedule communication resources for a device to device communication between the first user equipment and at least one second user equipment. Control information relating to the device to device communication is sent to the at least one second user equipment in response to the request.
Abstract:
There are provided measures for mobility management for device-to-device communications. Such measures exemplarily include receiving a radio handover request message indicating that a radio handover of at least one communication endpoint utilizing device-to-device communication is to be hidden from core network, and determining, based on device-to-device context information, which is information on said device-to-device communication, and/or on information on said at least one communication endpoint, whether a notification of said radio handover is to be transmitted.
Abstract:
A method for a communications system, wherein in response to detecting a radio link problem during a first phase of a radio link failure, the first user terminal transmits an indication of the detection of the radio link problem to a second user terminal over a device-to-device link. In response to a report on the radio link problem detection of the first user terminal being sent from the second user terminal to a network apparatus, the first user terminal receives a confirmation on a status of the report from the second user terminal over the device-to-device link. Based on the confirmation, the first user terminal decides, whether to stop a first radio link failure timer, reset the first radio link failure timer, or extend the first radio link failure timer.
Abstract:
Various communication systems may benefit from differentiated quality of service management. For example, specific applications run on a user equipment in a 5G radio access network may benefit from the flexible differentiated quality of service management. A method includes determining a service flow setup, and mapping traffic through the service flow by a common convergence sublayer entity to at least one radio convergence sublayer entity. The method also includes controlling the traffic through the service flow.
Abstract:
A method and apparatus may include determining, by a network node, that a slave radio-resource-control function is to be initiated. The slave radio-resource-control function may be performed by an access point. The method may also include transmitting a message to the access point. The message includes at least one of a request to initiate the slave radio-resource-control function and a confirmation that the slave radio-resource-control function can be initiated.
Abstract:
An example technique may include controlling receiving, by a user device from a serving cell, a first control information including a scheduling grant that identifies a resource to be used for communication between the user device and the serving cell, controlling receiving, by the user device, at least a part of a second control information from one or more other cells that are not serving the user device, and determining, by the user device, whether or not to reject the scheduling grant from the serving cell based on at least the first control information received from the serving cell and the part of the second control information received from the one or more other cells that are not serving the user device.
Abstract:
A method includes coordinating one or more pools of resources for discovery signal transmission between a plurality of devices, at least one of said pools of resources being shared by at least one larger cell and at least one smaller cell at least partially in a coverage area of the said larger cell.
Abstract:
To reduce handover latency experienced by a user using a user equipment that is served for offloaded user data traffic by a first small cell, a handover between a first macro cell deploying the first small cell and a second macro cell deploying a second small cell is triggered when information indicating that the user equipment has associated with the second small cell not deployed by the first macro cell is received.
Abstract:
A method and apparatus may include receiving, by a user equipment from a first access point which supports a first radio access technology, a radio-resource-control (RRC) reconfiguration message including an RRC configuration information of a second access point, after an initiation of a slave RRC at the second access point has been determined. The second access point supports a second radio access technology, and performing, by the user equipment, a random access procedure with the second access point based on the RRC reconfiguration message. The user equipment is configured to have an RRC connection with the first access point and the first access point is a master node.