Abstract:
A process for producing ethanol from lactose containing substrates, comprising simultaneously saccharifying the substrate to produce monosaccharide and fermenting the monosaccharide to produce ethanol at a pH from 3.5-5.5, using a fermenting organism, wherein saccharification is carried out in the presence of a lactase, and wherein the fermenting organism is a Saccharomyces sp., and the ratio between the incubation time required for obtaining at least 90% hydrolysis of the lactose present in the substrate (t-1) and the total fermentation time (t2) is in the range of 0.1 to 1, and the Saccharomyces sp. is added in amounts that will result in an ethanol yield of at least 70% w/w of the theoretical ethanol yield from lactose by the end of fermentation.
Abstract:
The present disclosure relates to processes for production of an alcohol product from granular starch including a pre-treatment at an elevated temperature below the initial gelatinization temperature of the granular starch followed by simultaneous saccharification and fermentation, and optionally recovery of ethanol.
Abstract:
The present invention relates to a process for producing fermentation products from starch-containing material, wherein a GH5 xylanase is present during saccharification.
Abstract:
The present invention relates to processes for production of an alcohol product from granular starch comprising a pre-treatment at an elevated temperature below the initial gelatinization temperature of said granular starch followed by simultaneous saccharification and fermentation, and optionally recovery of ethanol.
Abstract:
The present invention relates to xylanase variants, comprising an alteration at least at one position corresponding to position 87 of the polypeptide of SEQ ID NO: 3, wherein the variant has xylanase activity and has increased xylanase inhibitor tolerance compared to the xylanase of SEQ ID NO: 3; and i) wherein the variant has at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or ii) wherein the number of alterations is 1-20, e.g., 1-10 such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
Abstract:
A process for producing ethanol from lactose containing substrates, comprising simultaneously saccharifying the substrate to produce monosaccharide and fermenting the monosaccharide to produce ethanol at a pH from 3.5-5.5, using a fermenting organism, wherein saccharification is carried out in the presence of a lactase, and wherein the fermenting organism is a Saccharomyces sp., and the ratio between the incubation time required for obtaining at least 90% hydrolysis of the lactose present in the substrate (t1) and the total fermentation time (t2) is in the range of 0.1 to 1, and the Saccharomyces sp. is added in amounts that will result in an ethanol yield of at least 70% w/w of the theoretical ethanol yield from lactose by the end of fermentation.
Abstract:
A process for producing ethanol from lactose containing substrates, comprising simultaneously saccharifying the substrate to produce monosaccharide and fermenting the monosaccharide to produce ethanol at a pH from 3.5-5.5, using a fermenting organism, wherein saccharification is carried out in the presence of a lactase, and wherein the fermenting organism is a Saccharomyces sp., and the ratio between the incubation time required for obtaining at least 90% hydrolysis of the lactose present in the substrate (t1) and the total fermentation time (t2) is in the range of 0.1 to 1, and the Saccharomyces sp. is added in amounts that will result in an ethanol yield of at least 70% w/w of the theoretical ethanol yield from lactose by the end of fermentation.
Abstract:
A process for producing ethanol from lactose containing substrates, comprising simultaneously saccharifying the substrate to produce monosaccharide and fermenting the monosaccharide to produce ethanol at a pH from 3.5-5.5, using a fermenting organism, wherein saccharification is carried out in the presence of a lactase, and wherein the fermenting organism is a Saccharomyces sp., and the ratio between the incubation time required for obtaining at least 90% hydrolysis of the lactose present in the sub strate (t-1) and the total fermentation time (t2) is in the range of 0.1 to 1, and the Saccharomyces sp. is added in amounts that will result in an ethanol yield of at least 70% w/w of the theoretical ethanol yield from lactose by the end of fermentation.
Abstract:
The present invention relates to a process for producing 5-hydroxymethylfurfural (HMF) from fructose in a single-phase aqueous solution comprising an organic solvent.