Abstract:
A system, method, and computer program product are provided for accessing multi-sample surfaces. A multi-sample store instruction that specifies data for a single sample of a multi-sample pixel and a sample mask is received and the data for the single sample is stored to each sample of the multi-sample pixel that is enabled according to the sample mask. A multi-sample load instruction that specifies a multi-sample pixel is received, and, in response to executing the multi-sample load instruction, data for one sample of the multi-sample pixel is received. A determination is made that the data for the one sample of the multi-sample pixel represents multi-sample pixel data for at least one additional sample of the multi-sample pixel.
Abstract:
A system, method, and computer program product are provided for redistributing multi-sample processing workloads between threads. A workload for a plurality of multi-sample pixels is received and each thread in a parallel thread group is associated with a corresponding multi-sample pixel of the plurality of pixels. The workload is redistributed between the threads in the parallel thread group based on a characteristic of the workload and the workload is processed by the parallel thread group. In one embodiment, the characteristic is rasterized coverage information for the plurality of multi-sample pixels.
Abstract:
A system, method, and computer program product are provided for multi-sample processing. The multi-sample pixel data is received and is analyzed to identify subsets of samples of a multi-sample pixel that have equal data, such that data for one sample in a subset represents multi-sample pixel data for all samples in the subset. An encoding state is generated that indicates which samples of the multi-sample pixel are included in each one of the subsets.
Abstract:
A system, method, and computer program product are provided for multi-sample processing. The multi-sample pixel data is received and an encoding state associated with the multi-sample pixel data is determined. Data for one sample of a multi-sample pixel and the encoding state are provided to a processing unit. The one sample of the multi-sample pixel is processed by the processing unit to generate processed data for the one sample that represents processed multi-sample pixel data for all samples of the multi-sample pixel or two or more samples of the multi-sample pixel.
Abstract:
A system, method, and computer program product are provided for executing processes involving at least one primitive in a graphics processor, utilizing a data structure. In operation, a data structure is associated with at least one primitive. Additionally, a plurality of processes involving the at least one primitive are executed in a graphics processor, utilizing the data structure. Moreover, the plurality of processes include at least one of selecting at least one surface or portion thereof to which to render, or selecting at least one of a plurality of viewports.
Abstract:
A system, method, and computer program product are provided for accessing multi-sample surfaces. A multi-sample store instruction that specifies data for a single sample of a multi-sample pixel and a sample mask is received and the data for the single sample is stored to each sample of the multi-sample pixel that is enabled according to the sample mask. A multi-sample load instruction that specifies a multi-sample pixel is received, and, in response to executing the multi-sample load instruction, data for one sample of the multi-sample pixel is received. A determination is made that the data for the one sample of the multi-sample pixel represents multi-sample pixel data for at least one additional sample of the multi-sample pixel.
Abstract:
A system, method, and computer program product are provided for generating primitive-specific attributes. In operation, it is determined whether a portion of a graphics processor is operating in a predetermined mode. If it is determined that the portion of the graphics processor is operating in the predetermined mode, only one or more primitive-specific attributes are generated in association with a primitive.
Abstract:
An arithmetic logic stage in a graphics pipeline includes a number of arithmetic logic units (ALUs). The ALUs each include, for example, a multiplier and an adder. The ALUs are interconnected by circuitry that, for example, routes the output from the multiplier in one ALU to both the adder in that ALU and an adder in another ALU.
Abstract:
A system, method, and computer program product are provided for multi-sample processing. The multi-sample pixel data is received and is analyzed to identify subsets of samples of a multi-sample pixel that have equal data, such that data for one sample in a subset represents multi-sample pixel data for all samples in the subset. An encoding state is generated that indicates which samples of the multi-sample pixel are included in each one of the subsets.
Abstract:
A system, method, and computer program product are provided for executing processes involving at least one primitive in a graphics processor, utilizing a data structure. In operation, a data structure is associated with at least one primitive. Additionally, a plurality of processes involving the at least one primitive are executed in a graphics processor, utilizing the data structure. Moreover, the plurality of processes include at least one of selecting at least one surface or portion thereof to which to render, or selecting at least one of a plurality of viewports.