摘要:
A radio-frequency identification (RFID) transponder device is disclosed. The RFID transponder device includes an antenna component for inductive communication with at least one basestation transceiver device and an interface component coupled to the antenna component. The interface component includes a demodulation component arranged to perform demodulation of a signal at the antenna component for basestation-to-transponder communication and a modulation component arranged to perform modulation of the signal at the antenna component for transponder-to-basestation communication. The interface component is arranged to operate in at least a charge and talk mode of operation, and during the charge and talk mode of operation the modulation component is arranged to perform binary phase-shift keying, BPSK, modulation of the signal at the antenna component for the transponder-to-basestation communication. A RFID basestation transceiver device is also disclosed.
摘要:
A transponder is disclosed. The transponder includes a resonant circuit serving as an antenna, a load modulation module coupled to the resonant circuit, a current source coupled to the resonant circuit and a command interpreter configured to interpret a received initialization command. The command interpreter is configured to monitor input communication for a stop command signal and a charge & talk bit and if the charge & talk bit is not received within a predetermined time interval after receiving the stop command signal, the load modulation module is activated to provide a signal for transmission by modifying an incoming carrier wave through the load modulation module. If the charge & talk bit is received within the predetermined time after receiving the stop command signal, the current source is activated to provide a signal for transmission by generating pulses of current.
摘要:
According to an example embodiment, a device includes a resonant circuit configured and arranged to provide a peak current flow at a resonance frequency. A trimming circuit provides variable impedances to the resonant circuit and thereby changes the resonance frequency for the resonant circuit. A driver circuit is configured to generate a trimming signal that oscillates at a desired frequency. A switch circuit couples and decouples the driver circuit to the resonant circuit for driving the resonant circuit with the trimming signal. An amplitude detection circuit detects amplitudes for signals generated in response to the trimming signal being connected to the resonant circuit. A processing circuit correlates detected amplitudes from the amplitude detection circuit with different impedance values of the variable trimming circuit.
摘要:
An apparatus comprising a power providing arrangement for a field powered device having a coil antenna for receiving a wireless signal, the power providing arrangement comprising: a first capacitor configured to be coupled to the coil antenna, the first capacitor configured to store energy obtained from the wireless signal received by the coil antenna, up to a first stored energy level, and configured to provide said energy to power the field powered device; a second capacitor arranged in parallel with the first capacitor via a switch; the switch providing at least a connected state in which the first capacitor and the second capacitor are connected in parallel and configured to both store the energy obtained from the wireless signal up to a second stored energy level, greater than the first stored energy level, and configured to provide said energy to power the field powered device and a disconnected state in which the second capacitor is disconnected from the first capacitor; the switch configured to transition from the disconnected state to the connected state based on particular signalling received from a remote device.
摘要:
A circuit for generating a modulated signal is disclosed. The circuit includes a constant current source. The circuit further includes a first switch that is coupled to the constant current source. The circuit also includes a second switch that is coupled to the first switch and a ground. The first switch and the second switch are coupled to a third switch. The third switch is coupled to a first integrated circuit pad. The first integrated circuit pad is defined to be used for coupling the third switch to a resonance circuit.
摘要:
A transponder is disclosed comprising a multichannel front-end circuit; each channel of the multichannel front-end circuit a resonant circuit associated with a respective antenna and producing, in use, an input voltage; a conditioning circuit configured to provide a conditioned input voltage from the input voltage, and a comparator configured to compare the conditioned input voltage with a reference voltage; wherein the front-end circuit further comprises: a variable load connectable across each of the resonant circuits, and a controller configured to, in use, vary the variable load and detect an output from each of the comparators.A method of operating such a transponder to determine a most strongly coupled channel, or more strongly coupled channels, is also disclosed.
摘要:
A transponder is disclosed comprising a multichannel front-end circuit; each channel of the multichannel front-end circuit a resonant circuit associated with a respective antenna and producing, in use, an input voltage; a conditioning circuit configured to provide a conditioned input voltage from the input voltage, and a comparator configured to compare the conditioned input voltage with a reference voltage; wherein the front-end circuit further comprises: a variable load connectable across each of the resonant circuits, and a controller configured to, in use, vary the variable load and detect an output from each of the comparators.A method of operating such a transponder to determine a most strongly coupled channel, or more strongly coupled channels, is also disclosed.
摘要:
In accordance with various example embodiments, a vehicle base station wirelessly communicates data with a remote transceiver circuit. The remote transceiver circuit intermittently transitions a data-receiving circuit of the remote transceiver circuit between on and off states. The vehicle base station intermittently polls the remote transceiver circuit with a series of data packets, at least one of which the data-receiving circuit of the remote transceiver circuit will receive while in the on state. The remote transceiver circuit, upon receiving the data packet, will reset a state counter to enable the remote transceiver circuit to receive a wake-up data packet while operating in the on state; in response, transmitting response data to the vehicle base station. The data communication is carried out to facilitate authentication of the remote transceiver. Exemplary embodiments include a system for passive keyless go and passive keyless entry in a vehicle.
摘要:
A radio-frequency identification (RFID) transponder device is disclosed. The RFID transponder device includes an antenna component for inductive communication with at least one basestation transceiver device and an interface component coupled to the antenna component. The interface component includes a demodulation component arranged to perform demodulation of a signal at the antenna component for basestation-to-transponder communication and a modulation component arranged to perform modulation of the signal at the antenna component for transponder-to-basestation communication. The interface component is arranged to operate in at least a charge and talk mode of operation, and during the charge and talk mode of operation the modulation component is arranged to perform binary phase-shift keying, BPSK, modulation of the signal at the antenna component for the transponder-to-basestation communication. A RFID basestation transceiver device is also disclosed.
摘要:
A transponder is disclosed. The transponder includes a resonant circuit serving as an antenna, a load modulation module coupled to the resonant circuit, a current source coupled to the resonant circuit and a command interpreter configured to interpret a received initialization command. The command interpreter is configured to monitor input communication for a stop command signal and a charge & talk bit and if the charge & talk bit is not received within a predetermined time interval after receiving the stop command signal, the load modulation module is activated to provide a signal for transmission by modifying an incoming carrier wave through the load modulation module. If the charge & talk bit is received within the predetermined time after receiving the stop command signal, the current source is activated to provide a signal for transmission by generating pulses of current.