摘要:
An implanter is equipped with an ion beam current detector, a temperature sensor, a temperature controller and a cooling system to increase the ratio of a specific ion cluster in the ion source chamber of the implanter. Therefore, the implanting efficiency for a shallow ion implantation is increased consequently.
摘要:
An implanter is equipped with an ion beam current detector, a temperature sensor, a temperature controller and a cooling system to increase the ratio of a specific ion cluster in the ion source chamber of the implanter. Therefore, the implanting efficiency for a shallow ion implantation is increased consequently.
摘要:
A method for doping a semiconductor substrate is disclosed wherein a layer of a first conductivity type is first formed followed by forming a blocking layer with an open area. An etch process is performed through the open area to remove the layer of the first conductivity type to exposed the top surface of the semiconductor substrate. Dopant ions are introduced to form a dopant region of a second conductivity type on the beneath the top surface of the semiconductor substrate wherein the dopant region of the second conductivity type is not in contact with the dopant layer of the first conductivity type that is not etched off thus forming a PN structure to form diodes for the interdigitated back contact photovoltaic cells. Since the ion doping processes are self-aligned, the mask requirements are minimized and the production cost for solar cells are reduced.
摘要:
A method for doping a semiconductor substrate is disclosed wherein a layer of a first conductivity type is first formed followed by forming a blocking layer with an open area. An etch process is performed through the open area to remove the layer of the first conductivity type to exposed the top surface of the semiconductor substrate. Dopant ions are introduced to form a dopant region of a second conductivity type on the beneath the top surface of the semiconductor substrate wherein the dopant region of the second conductivity type is not in contact with the dopant layer of the first conductivity type that is not etched off thus forming a PN structure to form diodes for the interdigitated back contact photovoltaic cells. Since the ion doping processes are self-aligned, the mask requirements are minimized and the production cost for solar cells are reduced.