Abstract:
A barrier free quantum dot particles film includes a free standing layer comprising shielded quantum dot particles; wherein the shielded quantum dot particles are formed by shielding quantum dot particles by at least one shielding method; wherein the shielded quantum dot particles are characterized in resisting at least one condition selected from the group consisting of high temperature, high humidity and water; and wherein the shielded quantum dot particles are dispersed in an acrylate adhesive. A method of fabricating a barrier free quantum dot particles free standing film is also disclosed. The method of fabrication of shielded quantum dot particles film on a light emitting diode (LED) lens is also disclosed.
Abstract:
The present invention provides an anisotropic, thermal conductive, electromagnetic interference (EMI) shielding composite including a plurality of aligned polymer nanofibers to form a polymer mat or scaffold having a first and second planes of orientation of the polymer nanofibers. The first plane of orientation of the polymer nanofibers has a thermal conductivity substantially the same as or similar to that of the second plane, and the thermal conductivity of the first or second plane of orientation of the polymer nanofibers is at least 2-fold of that of a third plane of orientation of the polymer nanofibers which is about 90 degrees out of the first and second planes of orientation of the polymer nanofibers, respectively, while the electrical resistance of each of the first and second planes is at least 3 orders lower than that of the third plane. A method for preparing the present composite is also provided.
Abstract:
A nonwoven nanofiber separator, including a composite of a first polymer material and a second polymer material, wherein: the first polymer material may include at least one member selected from the group consisting of poly(vinylidene fluoride), polyimide, polyamide and polyacrylonitrile; the second polymer material may include at least one member selected from the group consisting of polyethylene glycol, polyacrylonitrile, poly(ethylene terephthalate), poly(vinylidene fluoride), poly(vinylidene fluoride-hexafluoropropylene) and poly(vinylidene fluoride-co-chlorotrifluoroethylene); and the second polymer material is different from the first polymer material. A method of improving physical stability of a battery separator with improved performance is also provided.
Abstract:
A quantum dot-based color display includes a backlight unit with a light source and light source distribution layer and a photo down-conversion light emissive layer. The photo down-conversion layer has populations of light-emitting Group II-VI core-shell structure quantum dots, the core having an excess amount of a Group II component in a ratio to a Group VI component of approximately 6:1 or greater. The quantum dots include an organic fraction of approximately 20 weight percent to approximately 45 weight percent, the organic fraction including ligands bound to quantum dot surfaces in an as-deposited state and including one or more long-chain fatty acids. Non-barrier polymer films are positioned on either side of the photo down conversion light emissive layer which exhibits photo stability at a light intensity of at least 4000 W/m2. A display panel cooperates with the back light unit to form the display.
Abstract:
The present invention provides an anisotropic, thermal conductive, electromagnetic interference (EMI) shielding composite including a plurality of aligned polymer nanofibers to form a polymer mat or scaffold having a first and second planes of orientation of the polymer nanofibers. The first plane of orientation of the polymer nanofibers has a thermal conductivity substantially the same as or similar to that of the second plane, and the thermal conductivity of the first or second plane of orientation of the polymer nanofibers is at least 2-fold of that of a third plane of orientation of the polymer nanofibers which is about 90 degrees out of the first and second planes of orientation of the polymer nanofibers, respectively, while the electrical resistance of each of the first and second planes is at least 3 orders lower than that of the third plane. A method for preparing the present composite is also provided.
Abstract:
A barrier free quantum dot particles film includes a free standing layer comprising shielded quantum dot particles; wherein the shielded quantum dot particles are formed by shielding quantum dot particles by at least one shielding method; wherein the shielded quantum dot particles are characterized in resisting at least one condition selected from the group consisting of high temperature, high humidity and water; and wherein the shielded quantum dot particles are dispersed in an acrylate adhesive. A method of fabricating a barrier free quantum dot particles free standing film is also disclosed. The method of fabrication of shielded quantum dot particles film on a light emitting diode (LED) lens is also disclosed.
Abstract:
A light control device and method for stimulating plant growth is disclosed. The light control device includes a light source capable of emitting light required for plant growth. The light control device further comprises a plurality of light conversion films rotatably mounted upon a film switching unit arranged around the light source, the film switching unit driven by a motor arranged therewithin. The plurality of light conversion films may further provide a plurality of light spectra required during a plurality of plant growth stages. The light control device determines plant growth stage based on the size and the height of the plants. The motor rotates the film switching unit, based on the plant growth stage of the plants, in such a manner that a light conversion film, associated with the plant growth stage of the plants, is positioned in front of the light source. Such positioning stimulates the plant growth.
Abstract:
A light control device and method for stimulating plant growth is disclosed. The light control device includes a light source capable of emitting light required for plant growth. The light control device further comprises a plurality of light conversion films rotatably mounted upon a film switching unit arranged around the light source, the film switching unit driven by a motor arranged therewithin. The plurality of light conversion films may further provide a plurality of light spectra required during a plurality of plant growth stages. The light control device determines plant growth stage based on the size and the height of the plants. The motor rotates the film switching unit, based on the plant growth stage of the plants, in such a manner that a light conversion film, associated with the plant growth stage of the plants, is positioned in front of the light source. Such positioning stimulates the plant growth.
Abstract:
The present application provides a method of continuous flow synthesis of core/shell quantum dots doped polymer mats (QD-MAT), including mixing a first core precursor with a second core precursor and feeding the reaction mixture into a first furnace to obtain quantum dot cores; feeding a first shell precursor and a second shell precursor into a second furnace and simultaneously injecting the quantum dot cores to obtain core/shell quantum dots; mixing the core/shell quantum dots with a polymer solution to obtain a QD-polymer composite; and introducing the QD-polymer composite to an electrospinning system to fabricate the core/shell quantum dots doped polymer mats. The present application also provides a method of correcting emission spectrum of light emitting devices with the core/shell quantum dots doped polymer mats with light diffusing properties which can be used to replace the diffuser layer of light emitting devices.
Abstract:
The present invention provides a thermally-decomposable consolidated polymer particle encapsulated-electrode for a lithium-ion battery. The electrode includes polymer particles including at least one connection unit and at least one crosslinker in an amount of approximately 40% to 98% by weight and at least one binder material in an amount of approximately from 2% to 60% by weight. The consolidated crosslinked polymer particle coating results in a porous structure encapsulating the electrode. The pressure resistance of the consolidated crosslinked polymer particle coating ranges approximately from 0.5 to 8 MPa and the consolidated crosslinked polymer particle coating is decomposed to release a non-flammable gas and phosphorous-containing molecules so as to prevent thermal runaway at a temperature approximately from 300° C. to 500° C.