摘要:
In producing a semiconductor device such as a thin film transistor (TFT), a silicon semiconductor film is formed on a substrate having an insulating surface, such as a glass substrate, and then a silicon nitride film is formed on the silicon semiconductor film. After that, a hydrogen ion, fluorine ion, or chlorine ion is introduced into the silicon semiconductor film through the silicon nitride film, and then the silicon semiconductor film into which an ion is introduced is heated in an atmosphere containing hydrogen, fluorine, chlorine or these mixture, to neutralize dangling bonds in the silicon semiconductor film and reduce levels in the silicon semiconductor film.
摘要:
In producing a semiconductor device such as a thin film transistor (TFT), a silicon semiconductor film is formed on a substrate having an insulating surface, such as a glass substrate, and then a silicon nitride film is formed on the silicon semiconductor film. After that, a hydrogen ion, fluorine ion, or chlorine ion is introduced into the silicon semiconductor film through the silicon nitride film, and then the silicon semiconductor film into which an ion is introduced is heated in an atmosphere containing hydrogen, fluorine, chlorine or these mixture, to neutralize dangling bonds in the silicon semiconductor film and reduce levels in the silicon semiconductor film.
摘要:
In producing a semiconductor device such as a thin film transistor (TFT), a silicon semiconductor film is formed on a substrate having an insulating surface, such as a glass substrate, and then a silicon nitride film is formed on the silicon semiconductor film. After that, a hydrogen ion, fluorine ion, or chlorine ion is introduced into the silicon semiconductor film through the silicon nitride film, and then the silicon semiconductor film into which an ion is introduced is heated in an atmosphere containing hydrogen, fluorine, chlorine or these mixture, to neutralize dangling bonds in the silicon semiconductor film and reduce levels in the silicon semiconductor film.
摘要:
In producing a semiconductor device such as a thin film transistor (TFT), a silicon semiconductor film is formed on a substrate having an insulating surface, such as a glass substrate, and then a silicon nitride film is formed on the silicon semiconductor film. After that, a hydrogen ion, fluorine ion, or chlorine ion is introduced into the silicon semiconductor film through the silicon nitride film, and then the silicon semiconductor film into which an ion is introduced is heated in an atmosphere containing hydrogen, fluorine, chlorine or these mixture, to neutralize dangling bonds in the silicon semiconductor film and reduce levels in the silicon semiconductor film.
摘要:
There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
摘要:
A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
摘要:
In a thin film transistor (TFT), a mask is formed on a gate electrode, and a porous anodic oxide is formed in both sides of the gate electrode using a relatively low voltage. A barrier anodic oxide is formed between the gate electrode and the porous anodic oxide and on the gate electrode using a relatively high voltage. A gate insulating film is etched using the barrier anodic oxide as a mask. The porous anodic oxide is selectively etched after etching barrier anodic oxide, to obtain a region of an active layer on which the gate insulating film is formed and the other region of the active layer on which the gate insulating film is not formed. An element including at least one of oxygen, nitrogen and carbon is introduced into the region of the active layer at high concentration in comparison with a concentration of the other region of the active layer. Further, N- or P-type impurity is introduced into the active layer. Accordingly, high resistance impurity regions are formed in both sides of a channel forming region.
摘要:
A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
摘要:
A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
摘要:
A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.