摘要:
In an apparatus for producing trichlorosilane, an internal space of a reaction chamber is partitioned in a radial direction by first walls running along a circumferential direction, and is partitioned into multiple spaces by second walls which extend in a direction crossing the circumferential direction. Upper portions or lower portions of the first walls and the second walls are formed with a communicating portion which circulates a raw material gas to be introduced, toward a central portion of a reaction chamber while the raw material gas goes through the small spaces sequentially and is turned up and down, heaters are installed in the small spaces, one of small spaces on both sides of the second walls is used as a small space for a upward flow passage, and the other is used as a small space for a downward flow passage, and the small spaces communicate with each other via the communication portion of the second walls.
摘要:
An apparatus for producing trichlorosilane, including: a reaction vessel that has a substantially cylindrical wall body, a top plate, and a bottom plate, where a reaction product gas is produced from a raw gas supplied to the reaction vessel through a gas introducing passage provided to the lower section of the cylindrical wall body; and a plurality of heaters that are disposed inside the reaction vessel to heat the raw gas, wherein each of the heaters has a heating element that is elongated in a vertical direction and generates heat by electrification, and a mount that is fixed to the bottom plate and supports the heating element; a flange is provided to intermediate height of the heating element such that the flange is arranged upper than the gas introducing passage and is elongated in horizontal direction; and a passage of the raw gas formed between adjacent heaters is narrowed by the flange.
摘要:
An apparatus for producing trichlorosilane, including: a reaction vessel that has a substantially cylindrical wall body, a top plate, and a bottom plate, where a reaction product gas is produced from a raw gas supplied to the reaction vessel through a gas introducing passage provided to the lower section of the cylindrical wall body; and a plurality of heaters that are disposed inside the reaction vessel to heat the raw gas, wherein each of the heaters has a heating element that is elongated in a vertical direction and generates heat by electrification, and a mount that is fixed to the bottom plate and supports the heating element; a flange is provided to intermediate height of the heating element such that the flange is arranged upper than the gas introducing passage and is elongated in horizontal direction; and a passage of the raw gas formed between adjacent heaters is narrowed by the flange.
摘要:
In an apparatus for producing trichlorosilane, an internal space of a reaction chamber is partitioned in a radial direction by first walls running along a circumferential direction, and is partitioned into multiple spaces by second walls which extend in a direction crossing the circumferential direction. Upper portions or lower portions of the first walls and the second walls are formed with a communicating portion which circulates a raw material gas to be introduced, toward a central portion of a reaction chamber while the raw material gas goes through the small spaces sequentially and is turned up and down, heaters are installed in the small spaces, one of small spaces on both sides of the second walls is used as a small space for a upward flow passage, and the other is used as a small space for a downward flow passage, and the small spaces communicate with each other via the communication portion of the second walls.
摘要:
An apparatus for producing trichlorosilane from raw gas containing silicon tetrachloride and hydrogen, having: a reaction chamber being supplied with the raw gas for generating reacted gas containing trichlorosilane and hydrogen; a plurality of heaters heating the raw gas and having exothermic portions being disposed along a vertical direction in the reaction chamber; a plurality of electrodes being connected to basal portions of the heaters; and a radiation plate being disposed between the exothermic portions of the heaters.
摘要:
An apparatus for producing trichlorosilane from raw gas containing silicon tetrachloride and hydrogen, having: a reaction chamber being supplied with the raw gas for generating reacted gas containing trichlorosilane and hydrogen; a plurality of heaters heating the raw gas and having exothermic portions being disposed along a vertical direction in the reaction chamber; a plurality of electrodes being connected to basal portions of the heaters; and a radiation plate being disposed between the exothermic portions of the heaters.
摘要:
A method of manufacturing trichlorosilane includes a conversion reaction process (first reaction process) for producing a first reaction product gas, which contains trichlorosilane, dichlorosilylene, hydrogen chloride, and high-order silane compounds, by performing a conversion reaction of silicon tetrachloride and hydrogen, which are raw materials, in a first temperature range that is equal to or higher than 1000° C. and equal to or lower than 1900° C.; a first cooling process for cooling the first reaction product gas to a temperature of 950° C. or lower within 1 sec (except that the first reaction product gas is cooled to a temperature lower than 600° C. within 0.01 sec); a second reaction process for maintaining the temperature of the first reaction product gas in a second temperature range, which is equal to or higher than 600° C. and equal to or lower than 950° C., during the time that is equal to or more than 0.01 sec and equal to or less than 5 sec; and a second cooling process for cooling a second reaction product gas, which has been subjected to the second reaction process, to a temperature lower than 600° C.
摘要:
An apparatus for producing polycrystalline silicon having: a bell jar having a circumferential wall forming a chamber of a reactor and a jacket covering a circumferential wall, and in which a cooling path formed between the circumferential wall and the jacket that allows cooling medium including water to flow therethrough; a coolant feeding system which is connected to the bell jar so as to feed the cooling medium to the cooling path; a coolant recovering system which is connected to the bell jar so as to recover the cooling medium from the cooling path; a pressure control part controlling a pressure in the cooling path; and a flow-rate control part controlling a flow rate of the cooling medium, wherein the cooling medium flows in the cooling path as boiling two-phase flow by controlling the pressure and flow rate of the cooling medium.
摘要:
An apparatus for producing trichlorosilane, comprising: a reaction chamber into which the raw gas is introduced to produce a reaction gas; a plurality of heaters disposed inside the reaction chamber to heat the raw gas; and a plurality of electrodes connected to basal portions of the heaters, wherein the heaters include first heaters each having an exothermic portion and second heaters each having an exothermic portion shorter than that of the first heater and a radiation plate connected to the exothermic portion, wherein a partial portion of the exothermic portion of the first heater faces the radiation plate of the second heaters; the reaction chamber has an introducing port of the raw gas on a side of the exothermic portion of the second heater; and the reaction chamber has discharge port of the reaction product gas on a side of the radiation plate of the second heater is arranged.
摘要:
The present invention relates to a method for producing trichlorosilane. In this method for producing trichlorosilane, first, silicon tetrachloride and hydrogen are subjected to a conversion reaction at a temperature of equal to or higher than 1000° C. and equal to or lower than 1900° C., to produce a reaction gas containing trichlorosilane, dichlorosilylene, hydrogen chloride and high-order silane compounds, and then the reaction gas discharged from the conversion furnace is cooled to 600° C. or higher within 0.01 seconds from the initiation of cooling and to 500° C. or lower within 2 seconds. Subsequently, the reaction gas is maintained in a temperature range of equal to or higher than 500° C. and equal to or lower than 950° C. for a time period of equal to or longer than 0.01 seconds and equal to or shorter than 5 seconds. The reaction gas is further cooled to below 500° C.