摘要:
The present invention is related to a production method of a photoluminescence material by micro-plasma treatment for degrading plastic piece into multiple smaller molecular, a graphene quantum dot and the composite thereof. By using micro-plasma treatment, the production method provided by the present invention consumes very little energy and the processing steps is simple and efficiency without the existence of any organic solvent. The products obtained by the said treatment is high valued graphene quantum dot and graphene quantum dot composite with excellent photoluminescence ability for at least white, blue, green, cyan or yellow colors.
摘要:
The present invention provides a microplasma device and system thereof. The microplasma device comprises a reaction tank carrying with a reaction solution. A nanomaterial and its precursors are contained in the reaction solution. A first electrode is at least partially immersed in the reaction solution. A second electrode comprises a microplasma array component to eject microplasma array to the surface of the reaction solution. A power source is electrically connected between the first electrode and the second electrode. The present invention provides a novel microplasma array device to produce nanomaterial with increased yield rate. The microplasma array device can be multiplied by adding the outlet of the microplasma as desired to produce nanomaterial including but not limited to nano-metal particles, carbon quantum dots, silicon quantum dots and plasma-activated water with higher yield rate.
摘要:
Present invention is related to a porous substrate loaded with porous nano-particles structure and one-step micro-plasma production method thereof. Due to the micro-plasma system enables to enhance the electron density and promotes reaction speed in the reaction without generating thermal effect, the present invention is allowed to be performed at atmosphere environment. The nano-particles also can be quickly obtained by aforementioned micro-plasma system. The electromagnetic field generated by the micro-plasma can drive the nano-particles to be loaded onto the porous substrate in a one step, rapid and low cost process to improve the conventional techniques which requires relatively long procedure time and complicated process.
摘要:
The present invention is related to a method of producing nano-composites, which has the following steps: providing a solution, the solution has a substrate and a precursor of a zero-dimensional nanoparticles; subjecting a surface of the solution to a plasma to activate the precursor to generate the zero-dimensional nanoparticles in the solution; whereby the nanoparticles are self-assembled on the substrate uniformly to generate the nano-composites.
摘要:
In the porous substrate loaded with porous nano-particles structure and one-step micro-plasma production method thereof, since the micro-plasma system enhances the electron density and promotes reaction speed in the reaction without generating thermal effect, the method may be performed at an atmosphere environment. The nano-particles also can be quickly obtained by aforementioned micro-plasma system. The electromagnetic field generated by the micro-plasma can drive the nano-particles to be loaded onto the porous substrate in a one step, rapid and low cost process to improve the conventional techniques which require a relatively long procedure time and a complicated process.
摘要:
A production method of low dimensional nano-material comprises steps of: introducing a layered material; adding an intercalating agent into the layered material; and exfoliating the layered material by ball-milling to form the low dimensional material. Mechanochemical approaches for low dimensional nano-material like graphene quantum dots synthesis offer a promise of new reaction pathways, and greener and more efficient syntheses, making them potential approaches for low cost production.
摘要:
A method of producing nano-composites has the following steps: providing a solution, with the solution having a substrate and a precursor of a zero-dimensional nanoparticles; and subjecting a surface of the solution to a plasma to activate the precursor to generate the zero-dimensional nanoparticles in the solution. The nanoparticles are self-assembled on the substrate uniformly to generate the nano-composites.
摘要:
A production method of low dimensional nano-material comprises steps of: introducing a layered material; adding an intercalating agent into the layered material; and exfoliating the layered material by ball-milling to form the low dimensional material. Mechanochemical approaches for low dimensional nano-material like graphene quantum dots synthesis offer a promise of new reaction pathways, and greener and more efficient syntheses, making them potential approaches for low cost production.
摘要:
Provided is a composite carbon material including a substrate and a graphene oxide. The graphene oxide accounts for about 5 wt % to 60 wt % based on a total weight of the substrate and the graphene oxide. A method of preparing a composite carbon material is further provided. The prepared composite carbon material has excellent hydrophilic property, flexibility, electrical conductivity and dispersity.
摘要:
Provided is a method for producing a modified graphene, comprising the steps of intercalating or inserting a mixture of intercalating agents in a spacing between interlayers of carbon substrates or between carbon substrates, whereby the binding force between the interlayers of the carbon substrates or between the carbon substrates is weaken; and then exfoliating the pretreated carbon substrates to form the modified graphene. Upon environmental friendly purpose, the method according to the present invention is useful for reducing the total amount of strong acid. Therefore, the amount of the generated oxygen-containing functional groups attached on the modified graphene is modulated to avoid defects and maintain a yield over 80%.