Abstract:
One or more violet lasers and wavelength conversion materials, such as phosphor, are utilized to provide high efficiency light sources, illumination systems, projection systems and backlights that have no speckle at low cost. This solution bridges the gap that currently exists between lasers and light emitting diodes (LEDs) by providing a visible light source that has brightness higher than that of LEDs and lower than that of lasers.
Abstract:
An optical projection system comprises a light source, a substantially planar optical element array for receiving light emitted from the light source, and a display panel for selectively outputting light from the optical element array. The optical element array includes an optically transmissive substrate material and a plurality of optical micro-elements formed on at least one surface of the substrate material. The display panel has a plurality of pixels for selectively outputting light output from the optical element array. The micro-elements can include micro-lenses, micro-prisms, micro-waveguides, or any suitable combination of the foregoing, configured to alter the characteristics of light emitted from the light source to create a desired illumination source.
Abstract:
A system and method for reducing speckle of a laser beam is disclosed. The system includes at least an active device capable of temporally and/or spatially averaging the speckle pattern of a laser. The device can be used with an external diffuser or have an integrated diffusive layer within its structure to enhance the speckle reduction. The speckle reduction system alters the phase and/or path of light rays within an input laser beam as they pass through a transmissive device or reflect off of the surface of a reflective device.
Abstract:
A light collection system includes at least one light source, a light tunnel having reflective walls and a collimating plate at the light output end of the tunnel. The collimating plate includes an optical element array. The element array receives the light emitted from the light source and outputs part of the light at a desired cone angle and reflects the remainder back into the tunnel toward the light source. The light is “recycled” in the tunnel until the light either exits the collection system through the collimating plate or gets absorbed within the collection system.
Abstract:
A compact, light weight, efficient and cost-effective illumination system for optical displays is disclosed. The illumination system is capable of producing a self-luminous light beam of selected cross-section and spatial distribution in terms of intensity and angle. The illumination system can efficiently couple light from light sources having wide variety of sizes and shapes into light valves of various shapes and sizes. The illumination system includes a light recovery system or a polarization conversion system or a suitable combination of the foregoing.
Abstract:
A light recycler for use in color projection display systems. The light recycler redirects light reflected by a color wheel of the projection system to increase the light output of the projection system. The light recycler is capable of setting the desired numerical aperture of the light source beam, as well as providing the desired spatial distribution of light in terms of intensity and angle. This improves the light uniformity and brightness of the image displayed by the projection system, and improves the efficiency of the system. The light recycler includes at least one substantially planar optical element array receiving the non-uniform light from the light source. The optical element array includes an optically transmissive substrate and a plurality of optical micro-elements formed in the substrate. The micro-elements act together to produce an output light beam having a desired cross-sectional area and spatial distribution of light intensity and angle.
Abstract:
A light extraction plate can be used with a light emitting diode (LED) to efficiently extract and provide control over the spatial distribution of extracted light in terms of intensity and angle. The extraction plate can have millions of optical micro-elements and can be manufactured independently of the LED using conventional integrated circuit (IC) fabrication techniques. The extraction plate is preferably attached or bonded to an LED surface.
Abstract:
An illumination system includes one or more extraction optical elements to efficiently extract light from light emitting diodes (LEDs) by reducing light losses within the LED structure. Micro-element optical plates can also be included in the system to provide control over the spatial distribution of light in terms of intensity and angle.
Abstract:
A vertical electrostatic actuator is based on a layered structure consisting of two conducting or semiconducting layers separated by an insulating layer and/or layered structure consisting of p-type and n-type layers separated by a pn-junction. The number of conducting layers, p-type layers and/or n-type layers can be more than two as long as each two adjacent layers are separated by an insulating layer or a pn-junction. The mobile electrode of the actuator can be formed along a flexure in a micro-mechanical system. Two stationary electrodes are located on either side of the mobile electrode. The layered structure of the electrodes increases the torque on the flexure and thus improves the performance of the actuator. Fabrication methods for the electrostatic actuator and micro-mechanical systems employing the same are disclosed.
Abstract:
A wavelength conversion material with an omni-directional reflector is utilized to enhance the optical efficiency of an illumination system. Light guides with restricted output apertures, micro-element plates and optical elements are utilized to enhance the brightness of delivered light through light recycling. In addition, micro-element plates may be used to provide control over the spatial distribution of light in terms of intensity and angle. Efficient and compact illumination systems are also disclosed.