Abstract:
A plasma processor coil can include a shorting turn ohmically or only reactively coupled to plural multi-turn, co-planar, interleaved spiral, parallel connected windings. A separate capacitor can be associated with each winding to shunt current from one portion of that winding to another portion of the winding. The spacing between adjacent turns of peripheral portions of each winding can differ from the spacing between adjacent turns of interior portions of each winding. The coil can have a length that is short relative to the wavelength of RF excitation for the coil.
Abstract:
Improved methods and apparatus for ion-assisted etch processing in a plasma processing system are disclosed. In accordance with various aspects of the invention, an elevated edge ring, a grooved edge ring, and a RF coupled edge ring are disclosed. The invention operates to improve etch rate uniformity across a substrate (wafer). Etch rate uniformity improvement provided by the invention not only improves fabrication yields but also is cost efficient and does not risk particulate and/or heavy metal contamination.
Abstract:
A method of etching a semiconductor substrate with improved critical dimension uniformity comprises supporting a semiconductor substrate on a substrate support in an inductively coupled plasma etch chamber; supplying a first etch gas to a central region over the semiconductor substrate; supplying a second gas comprising at least one silicon containing gas to a peripheral region over the semiconductor substrate surrounding the central region, wherein a concentration of silicon in the second gas is greater than a concentration of silicon in the first etch gas; generating plasma from the first etch gas and second gas; and plasma etching an exposed surface of the semiconductor substrate.
Abstract:
A gas chamber contains upper and lower chamber bodies forming a cavity, a heating chuck for a wafer, a remote gas source, and an exhaust unit. Gas is injected into the cavity through channels in an injector. Each channel has sections that are bent with respect to each other at a sufficient angle to substantially eliminate entering light rays entering the channel from exiting the channel without reflection. The channels have funnel-shaped nozzles at end points proximate to the chuck. The injector also has thermal expansion relief slots and small gaps between the injector and mating surfaces of the chamber and gas source. The temperature of the injector is controlled by a cooling liquid in cooling channels and electrical heaters in receptacles of the injector. The upper chamber body is funnel-shaped and curves downward at an end of the upper chamber body proximate to the chuck.
Abstract:
A method and an apparatus for a semi-empirical process simulation using a calibrated profile simulator to create a reactor model which can predict neutral and ion flux distributions on a substrate as a function of the reactor settings include providing a set of conditions characterized by unique reactor settings. Wafers are processed under each condition. Etch or deposition rates and surface profiles are measured and used in the calibrated profile simulator to derive the flux distributions. The flux distributions data generated by the processes are then used to create a reactor model.
Abstract:
A method of etching a semiconductor substrate with improved critical dimension uniformity comprises supporting a semiconductor substrate on a substrate support in an inductively coupled plasma etch chamber; supplying a first etch gas to a central region over the semiconductor substrate; supplying a second gas comprising at least one silicon containing gas to a peripheral region over the semiconductor substrate surrounding the central region, wherein a concentration of silicon in the second gas is greater than a concentration of silicon in the first etch gas; generating plasma from the first etch gas and second gas; and plasma etching an exposed surface of the semiconductor substrate.
Abstract:
A method for enhancing a process and profile simulator algorithm predicts the surface profile that a given plasma process will create. An energetic particle is first tracked. The ion fluxes produced by the energetic particle are then recorded. A local etch rate and a local deposition rate are computed from neutral fluxes, surface chemical coverage, and surface material type that are solved simultaneously.
Abstract:
A method and apparatus for calibrating a semi-empirical process simulator used to determine process values in a plasma process for creating a desired surface profile on a process substrate includes providing a test model which captures all mechanisms responsible for profile evolution in terms of a set of unknown surface parameters. A set Sets of test conditions processes is are derived for which the profile evolution is governed by only a limited number of parameters. For each set of test conditions process, model test values are selected and a test substrate is substrates are actually subjected to a the test process processes defined by the test values , thereby creating a test surface profile profiles. The test values are used to generate an approximate profile prediction predictions and are adjusted to minimize the discrepancy between the test surface profile profiles and the approximate profile prediction predictions, thereby providing a final model of the profile evolution in terms of the process values.
Abstract:
A method for enhancing a process and profile simulator algorithm predicts the surface profile that a given plasma process will create. An energetic particle is first tracked. The ion fluxes produced by the energetic particle are then recorded. A local etch rate and a local deposition rate are computed from neutral fluxes, surface chemical coverage, and surface material type that are solved simultaneously.
Abstract:
A method enhances a process and profile simulator algorithm to predict the surface profile that a given plasma process will create. The method first tracks an energetic particle and then records the ion fluxes produced by the energetic particle. A local etch rate and a local deposition rate are computed from neutral fluxes, surface chemical coverage, and surface material type that are solved simultaneously.