Abstract:
Compositions, methods and kits are provided that include an inhibitory oligonucleotide RNase inhibitor capable of inhibiting one or more types of RNase that coexist with biological samples or are introduced in the laboratory, thereby protecting RNA in the sample from degradation. More than one type of oligonucleotide RNase inhibitor may be combined in a mixture to inhibit a plurality of different RNases. Single oligonucleotides were identified to have inhibitory activity for a plurality of different RNases. The RNase oligonucleotide inhibitor may be immobilized on beads or other surface. It may be stored in a lyophilized form or in solution.
Abstract:
Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
Abstract:
Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
Abstract:
Provided herein is a method for reducing amplification of non-template molecules in a nucleic acid sample. In certain embodiments, the method involves adding a helicase to a reaction mixture for non-helicase-dependent amplification of target nucleic acid.
Abstract:
Compositions are provided that include a plurality of small molecules selected from the group consisting of an amide, urea or acetone having a molecular weight less than 300 g/mol; and dNTPs and a polymerase in a buffer suitable for use as an amplification buffer. Methods of use of the compositions are also described for reducing non-template DNA amplification.
Abstract:
Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity. The compositions and methods may use any single improvement or combination of improvements selected from thermolabile enzyme variants, poloxamers, various salts, indicators and one or more LAMP primer sets for detecting single and/or multiple targets, probes for detecting variants of the targets including SARS-CoV-2 variants and lateral flow devices.
Abstract:
Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
Abstract:
Methods are provided for a rapid, low cost approach to monitoring an amplification reaction. This includes monitoring the progress of isothermal or PCR amplification reactions to completion using pH-sensitive dyes that are either colored or fluorescent. Compositions are described that include a mixture of a DNA polymerase, deoxyribonucleotide triphosphate and Tris buffer in the range of 1.5 mM Tris to 5 mM Tris or equivalent.
Abstract:
Provided herein is a method for reducing amplification of non-template molecules in a nucleic acid sample. In certain embodiments, the method involves adding a helicase to a reaction mixture for non-helicase-dependent amplification of target nucleic acid.
Abstract:
Provided herein is a method for reducing amplification of non-template molecules in a nucleic acid sample. In certain embodiments, the method involves adding a helicase to a reaction mixture for non-helicase-dependent amplification of target nucleic acid.