摘要:
To provide a nonaqueous electrolyte secondary battery, containing: a positive electrode, which contains a positive electrode active material capable of inserting and detaching anions; a negative electrode, which contains a negative electrode active material capable of accumulating and releasing metal lithium, or lithium ions, or both thereof; and a nonaqueous electrolyte formed by dissolving a lithium salt in a nonaqueous solvent, wherein the nonaqueous electrolyte secondary battery contains a solid lithium salt at 25° C., and discharge voltage of 4.0 V.
摘要:
To provide a non-aqueous electrolyte storage element, including: a positive electrode which includes a positive-electrode active material capable of intercalating or deintercalating anions; a negative electrode which includes a negative-electrode active material capable of storing or releasing metallic lithium or lithium ion, or both thereof, a first separator between the positive electrode and the negative electrode; and a non-aqueous electrolyte which includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, wherein the non-aqueous electrolyte storage element includes a solid lithium salt at 25° C. and a discharge voltage of 4.0V, wherein the non-aqueous electrolyte storage element includes an ion-exchange membrane between the first separator and the positive electrode, between the first separator and the negative electrode, or between the first separator and the positive electrode and between the first separator and the negative electrode.
摘要:
To provide a nonaqueous electrolytic capacitor element, which contains: a positive electrode containing a positive electrode active material capable of intercalating or deintercalating anions; a negative electrode containing a negative electrode active material; and a nonaqueous electrolyte, which contains a nonaqueous solvent, an electrolyte salt containing a halogen atom, and a compound having a site capable of bonding to an anion containing a halogen atom.
摘要:
To provide a nonaqueous electrolytic capacitor element, which contains: a positive electrode containing a positive electrode active material capable of intercalating or deintercalating anions; a negative electrode containing a negative electrode active material; and a nonaqueous electrolyte, which contains a nonaqueous solvent, an electrolyte salt containing a halogen atom, and a compound having a site capable of bonding to an anion containing a halogen atom.
摘要:
To provide a non-aqueous electrolyte storage element, including: a positive electrode which includes a positive-electrode active material capable of intercalating or deintercalating anions; a negative electrode which includes a negative-electrode active material capable of storing or releasing metallic lithium or lithium ion, or both thereof; a first separator between the positive electrode and the negative electrode; and a non-aqueous electrolyte which includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, wherein the non-aqueous electrolyte storage element includes a solid lithium salt at 25° C. and a discharge voltage of 4.0 V, wherein the non-aqueous electrolyte storage element includes an ion-exchange membrane between the first separator and the positive electrode, between the first separator and the negative electrode, or between the first separator and the positive electrode and between the first separator and the negative electrode.
摘要:
A proton conductor includes a main constituent element. A part of the main constituent element is substituted by a transition metal. Valence of the transition metal is variable between valence of the main constituent element and valence lower than the valence of the main constituent element.
摘要:
A proton conductive electrolyte (20) is made of AB(1-x)MxO3 structure perovskite, and is characterized in that: the B is Ce; the M is a metal having valence that is smaller than +4; and an average of an ion radius of the M is less than an ion radius of Tm3+ and more than 56.4 pm.
摘要:
A proton conductive electrolyte (20) is made of AB(1−x)MxO3 structure perovskite, and is characterized in that: the B is Ce; the M is a metal having valence that is smaller than +4; and an average of an ion radius of the M is less than an ion radius of Tm3+ and more than 56.4 pm.
摘要:
A method for manufacturing a thin zirconia film comprises the steps: (a) preparing a suspension in which partially-stabilized or stabilized zirconia particles having electric charges are dispersed in a solvent; (b) positioning a pair of electrodes in the suspension; (c) applying an electric field between the electrodes, said zirconia particles moving to the electrode and said zirconia particles being deposited on the electrode electrochemically; and (d) sintering the zirconia film to form a partially-stabilized or stabilized thin zirconia film.
摘要:
[Problem to be Solved]To provide an electrolyte membrane for electrochemical cells excellent in oxide ion permeability, and a method of producing the same.[Solution]An electrolyte membrane for electrochemical cells that is made of an oxide ion conductor having a component composition expressed by a general formula: La1-XSrXGa1-YMgYO3 (where X=0.05 to 0.3, and Y=0.025 to 0.3), and having a perovskite type crystal structure, wherein the electrolyte membrane has a thickness of 1 to 10 μm and a columnar crystal structure grown to a membrane surface in a direction perpendicular to a membrane face, and wherein the perovskite type crystal structure of the electrolyte membrane having the columnar crystal structure grown to the membrane surface, has a crystal structure with [112] direction oriented perpendicularly to the membrane face.[Selected Drawing] None
摘要翻译:[待解决的问题]提供氧化物离子渗透性优异的电化学电池用电解质膜及其制造方法。 [解决方案]一种由具有由以下通式表示的成分组成的氧化物离子导体制成的用于电化学电池的电解质膜:La 1-X Sr x Ga >其中X = 0.05〜0.3,Y = 0.025〜0.3),并且具有钙钛矿型晶体结构, 其中所述电解质膜的厚度为1〜10μm,在与膜面垂直的方向上的膜表面生长的柱状晶体结构体,其中具有柱状晶体结构的电解质膜的钙钛矿型结晶结构生长至 膜表面具有垂直于膜面取向的[112]方向的晶体结构。 [已选图]无