摘要:
A production apparatus is used for a solution growth method. The production apparatus includes a seed shaft and a crucible. The seed shaft has a lower end surface to which an SiC seed crystal is attached. The crucible contains an SiC solution. The crucible includes a cylindrical portion, a bottom portion, and an inner lid. The bottom portion is disposed at a lower end of the cylindrical portion. The inner lid is disposed in the cylindrical portion. The inner lid has a through hole and is positioned below a liquid surface of the SiC solution when the SiC solution is contained in the crucible.
摘要:
A region of an SiC solution in the vicinity of an SiC seed crystal is cooled while suppressing the temperature variation in a peripheral region of the SiC solution. An apparatus includes a seed shaft and a crucible for an SiC solution. The seed shaft has a lower end surface for attachment to an SiC seed crystal. The crucible comprises a main body, an intermediate cover, and a top cover. The main body includes a first cylindrical portion and a bottom portion at a lower end portion of the first cylindrical portion. The intermediate cover is within the first cylindrical portion and above the liquid level of the SiC solution in the main body. The intermediate cover has a first through hole for the seed shaft. The top cover is disposed above the intermediate cover and has a second through hole for the seed shaft to pass through.
摘要:
A manufacturing apparatus of a SiC single crystal which can suppress the generation of a polycrystal is provided. A jig (41) and a crucible (6) are accommodated in a chamber (1). A SiC solution (8) is housed in the crucible (6). The jig (41) includes a seed shaft (411) and a cover member (412). The seed shaft (411) can move up and down, and a SiC seed crystal (9) is attached to the lower surface thereof. The cover member (412) is attached to the lower end portion of the seed shaft (411). The cover member (412) is a housing which has an opening at its lower end, wherein the lower end portion of the seed shaft (411) is disposed in the cover member (412).
摘要:
A manufacturing apparatus of a SiC single crystal which can suppress the generation of a polycrystal is provided. A jig (41) and a crucible (6) are accommodated in a chamber (1). A SiC solution (8) is housed in the crucible (6). The jig (41) includes a seed shaft (411) and a cover member (412). The seed shaft (411) can move up and down, and a SiC seed crystal (9) is attached to the lower surface thereof. The cover member (412) is attached to the lower end portion of the seed shaft (411). The cover member (412) is a housing which has an opening at its lower end, wherein the lower end portion of the seed shaft (411) is disposed in the cover member (412).
摘要:
An apparatus for producing an SiC single crystal includes a crucible for accommodating an Si—C solution and a seed shaft having a lower end surface where an SiC seed crystal (36) would be attached. The seed shaft includes an inner pipe that extends in a height direction of the crucible and has a first passage. An outer pipe accommodates the inner pipe and constitutes a second passage between itself and the inner pipe and has a bottom portion whose lower end surface covers a lower end opening of the outer pipe. One passage of the first and second passages serves as an introduction passage where coolant gas flows downward, and the other passage serves as a discharge passage where coolant gas flows upward. A region inside the pipe that constitutes the introduction passage is to be overlapped by a region of not less than 60% of the SiC seed crystal.
摘要:
An apparatus for SIC single crystal has an induction heating control unit such that frequency f (Hz) of alternating current to the induction heating unit satisfies Formula (1); D1 (mm) is permeation depth of electromagnetic waves into a crucible side wall by the heating unit, D2 (mm) is permeation depth of electromagnetic waves into a SIC solution, T (mm) is thickness of the crucible side wall of the crucible, and R (mm) is crucible inner radius: (D1−T)×D2/R>1.5 (1) where, D1 is defined by Formula (2) and D2 by Formula (3): D1=503292×(1/(f×σc×μc))1/2 (2) D2=503292×(1/(f×σs×μs))1/2 (3); σc is electric conductivity (S/m) of the sidewall, σs is electric conductivity (S/m) of the SiC solution; μc is relative permeability of the sidewall, and μs is relative permeability of the SIC solution.
摘要:
An apparatus for producing an SiC single crystal includes a crucible for accommodating an Si—C solution and a seed shaft having a lower end surface where an SiC seed crystal (36) would be attached. The seed shaft includes an inner pipe that extends in a height direction of the crucible and has a first passage. An outer pipe accommodates the inner pipe and constitutes a second passage between itself and the inner pipe and has a bottom portion whose lower end surface covers a lower end opening of the outer pipe. One passage of the first and second passages serves as an introduction passage where coolant gas flows downward, and the other passage serves as a discharge passage where coolant gas flows upward. A region inside the pipe that constitutes the introduction passage is to be overlapped by a region of not less than 60% of the SiC seed crystal.
摘要:
A manufacturing apparatus for SiC single crystal has a control unit to control induction heating such that frequency f (Hz) of alternating current to be passed to the induction heating unit satisfies Formula (1); D1 (mm) is permeation depth of electromagnetic waves into a side wall of a crucible by the heating unit, D2 (mm) is permeation depth of electromagnetic waves into a SiC solution, T (mm) is thickness of the crucible side wall of the crucible, and R (mm) is crucible inner radius: (D1−T)×D2/R>1 (1) where, D1 is defined by Formula (2), and D2 by Formula (3): D1=503292×(1/(f×σc×μc))1/2 (2) D2=503292×(1/(f×σs×μs))1/2 (3); σc is electric conductivity (S/m) of the sidewall, σs is electric conductivity (S/m) of the SiC solution; μc is relative permeability of the sidewall, and μs relative permeability of the SiC solution.
摘要:
A region of an SiC solution in the vicinity of an SiC seed crystal is cooled while suppressing the temperature variation in a peripheral region of the SiC solution. An apparatus includes a seed shaft and a crucible for an SiC solution. The seed shaft has a lower end surface for attachment to an SiC seed crystal. The crucible comprises a main body, an intermediate cover, and a top cover. The main body includes a first cylindrical portion and a bottom portion at a lower end portion of the first cylindrical portion. The intermediate cover is within the first cylindrical portion and above the liquid level of the SiC solution in the main body. The intermediate cover has a first through hole for the seed shaft. The top cover is disposed above the intermediate cover and has a second through hole for the seed shaft to pass through.
摘要:
A method for manufacturing an n-type SiC single crystal, enables the suppression of the variation in nitrogen concentration among a plurality of n-type SiC single crystal ingots manufactured. A method includes the steps of: providing a manufacturing apparatus (100) including a chamber (1) having an area in which a crucible (7) is to be disposed; heating the area in which the crucible (7) is to be disposed and evacuating the gas in the chamber (1); filling, after the evacuation, the chamber (1) with a mixed gas containing a noble gas and nitrogen gas; heating and melting a starting material housed in the crucible (7) disposed in the area to produce a SiC solution (8) containing silicon and carbon; and immersing a SiC seed crystal into the SiC solution under the mixed gas atmosphere to grow an n-type SiC single crystal on the SiC seed crystal.