摘要:
A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
摘要:
A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
摘要:
The present invention provides a device that makes it possible to perform real-time detection and analysis of BTEX components in real samples using an inexpensive and miniaturized hybrid specific binding-separation device. The device may be used in occupational health and safety applications as well as for toxicological population studies to determine the presence of organic volatile components in an air sample.
摘要:
A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
摘要:
A gas-phase detection system based on detecting optochemical and optoelectrochemical signals. The sensing platform is particularly powerful for detection of nitrogen oxides at low ppbV concentrations. The optochemical analysis is based on the color development due to a chemical reaction taking place in an optimized material. The electrochemical analysis can be based on the doping level or redox potential changes of an electrochemical sensor; and optoelectrochemical detection can be based on a combination of the electrochemical and optoelectrochemical methodologies. Each independent signal can be simultaneously detected, increasing the reliability of detection.
摘要:
A method for weight and/or fitness management using a metabolic analyzer that measures metabolic data including oxygen and carbon dioxide. The metabolic analyzer includes integrated collection-detection sensors with for high efficiency and collection, high specificity and simultaneous detection of at least two metabolic signatures, including at least oxygen and carbon dioxide, in breath via a porous membrane with high density of sensing binding sites, where the porous membrane includes sensing materials such that the sensing binding sites are specific to the metabolic signatures, and change colors upon interactions with the metabolic signatures. Weight of the subject is measured using a weight measurement device and a recommendation for food intake and/or physical activity is based on at least the readings of the metabolic analyzer and weight of the subject.
摘要:
An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
摘要:
A method for weight and/or fitness management using a metabolic analyzer that measures metabolic data including oxygen and carbon dioxide. The metabolic analyzer includes integrated collection-detection sensors with for high efficiency and collection, high specificity and simultaneous detection of at least two metabolic signatures, including at least oxygen and carbon dioxide, in breath via a porous membrane with high density of sensing binding sites, where the porous membrane includes sensing materials such that the sensing binding sites are specific to the metabolic signatures, and change colors upon interactions with the metabolic signatures. Weight of the subject is measured using a weight measurement device and a recommendation for food intake and/or physical activity is based on at least the readings of the metabolic analyzer and weight of the subject.
摘要:
A system for measuring and tracking metabolic rate, physical activity and calorie intake. The metabolic rate is measured with a design that features an adaptive sampling mechanism for accurate breath sample collection, optimized flow rate measurement for minimizing backpressure while maximizing accuracy, humidity regulation and water condensation reduction mechanism for reliable performance, as well as breath temperature measurement for volume and humidity corrections. The system further comprises an improved algorithm for determining physical activity such as related energy expenditure, and a mechanism for tracking changes in food intake over time.
摘要:
An integrated sensor is capable of detecting analytes using electrochemical (EC), electrical (E), and optical (O) signals or EC and O signals. The sensor introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.