摘要:
The module integrated type refrigerant condenser includes a roughly cylindrical right side header connected to the outlets of a plurality of condensing tubes and the inlets of a plurality of supercooling tubes, and a modulator directly connected to the right side header in the width direction of the core. By providing a partition part for dividing the second inner space into two gas-liquid separation chambers, the modulator is formed into a shape as if two roughly cylindrical pipe bodies were stacked up in the thickness direction of the core, and the width thereof is made shorter in comparison with a simple, cylindrical modulator.
摘要:
A communication chamber communicated with the downstream end of a condensing part is provided within a header. A gas-liquid separation chamber is provided beside the communication chamber for separating the refrigerant into gas and liquid phases. The height of this gas-liquid separation chamber is set to be smaller than that of the communication chamber to prevent the interference of the gas-liquid separation chamber with peripheral devices of a vehicle to facilitate the installation of the condenser. Further, a refrigerant introducing means is provided at a portion corresponding to a liquid refrigerant pool part at the lower part of the gas-liquid separation chamber within the partition part for introducing the refrigerant within the communication chamber into the liquid refrigerant within the gas-liquid separation chamber.
摘要:
In a receiver-integrated condenser, a super-cooling portion for cooling liquid refrigerant from a receiving unit is disposed between first and second condensing portions in a core portion in a vertical direction. Therefore, in an engine-idling, even when high-temperature air having passed through the receiver-integrated condenser is introduced again toward an upstream air side of the receiver-integrated condenser through a lower side of the receiver-integrated condenser, the high-temperature air is not introduced toward the arrangement position of said super-cooling portion, because the super-cooling portion is positioned at an upper side from the second condensing portion. Thus, super-cooling performance of refrigerant in the super-cooling portion of the core portion is prevented from being decreased even in the engine idling.
摘要:
In a refrigerant condenser including a super-cooling portion, the super cooling portion is located in the upper position of a core portion. Thus, when a vehicle engine idles, and high temperature cooling air having passed through the refrigerant condenser and the vehicle radiator is lead to the air upstream side of the condenser through the lower portion of the condenser, because the super-cooling portion is located at the upper position of the core portion, the super-cooling portion is not influenced by the high temperature air.
摘要:
A refrigerant receiver of elongated pipe 4 shape arranged in front of a refrigerant condenser 3. The receiver is of a dimension matched to that of the condenser, and has an inlet 34 for connection with the condenser section 13 and an outlet 38 for connection with a supercooler section 14. The receiver has inclined pipe portions 35 and 37 having inclinations to the horizontal direction, between which a bent portion 36 is arranged. No bubble is created in the refrigerant in the receiver irrespective of large values of the inclination of the receiver, thereby allowing only the liquid phase refrigerant to flow into the supercooler 14 from the outlet of the receiver 4.
摘要:
A modulator in a coolant recirculation line for a refrigerating apparatus. The modulator is used for storing an excess amount of the coolant recirculated in the system. The modulator has a space extending vertically, upward and a bottom end connected to the recirculating line at a position downstream of a condenser, in such a manner that only a part of the coolant passed through the condenser is introduced into the modulator to compensate for variations in the amount of coolant needed for recirculation in the system. The modulator can be arranged in the middle of the heat exchanger, and defines therein a boundary between the liquid phase and the gas phase, for a separation of the gas from the coolant, so that the portion of the heat exchanger downstream of the modulator can operate as a super cooler.
摘要:
A modulator in a coolant recirculation line for a refrigerating apparatus. The modulator is used for storing an excess amount of the coolant recirculated in the system. The modulator has a space extending vertically, upward and a bottom end connected to the recirculating line at a position downstream of a condenser, in such a manner that only a part of the coolant passed through the condenser is introduced into the modulator to compensate for variations in the amount of coolant needed for recirculation in the system. The modulator can be arranged in the middle of the heat exchanger, and defines therein a boundary between the liquid phase and the gas phase, for a separation of the gas from the coolant, so that the portion of the heat exchanger downstream of the modulator can operate as a super cooler.
摘要:
A main evaporator cools a driver's compartment of a vehicle while a cooling storage evaporator cools cooling storage packs that are used in cooling a sleeping compartment. Refrigerant is supplied to the main evaporator at the actuation of a first solenoid valve while refrigerant is supplied to the cooling storage evaporator at the actuation of a second solenoid valve. If a first switch is being actuated after the completion of the cooling storage operation of the cooling storage evaporator on the cooling storage packs and the temperature of the cooling storage packs is no more than a preset temperature, for example, -5.degree. C., FIR control is performed for alternately actuating the first solenoid valve and the second solenoid valve based on a predetermined time ratio (for example, 10 minutes 15 seconds).
摘要:
A refrigerating cycle apparatus for averting shortages of its refrigerant in a refrigerating cycle and of oil reflux regardless of fluctuations in the progress of freezing in a cold accumulating material. In operation, two solenoid valves are opened and a compressor is activated. The activated compressor causes stagnant refrigerant inside a cold accumulating evaporator to be collected into a receiver. Thereafter, one solenoid valve is closed to let the refrigerant flow only to the cold accumulating evaporator. This makes it possible to circumvent shortages of the refrigerant in the refrigerating cycle and of oil reflux irrespective of varying progress in the freezing status of the cold accumulating material.
摘要:
A receiver-integrated condenser for a refrigerating system for use in an automotive vehicle is disclosed. The condenser is composed of a heat exchanging core having many tubes extending horizontally in which refrigerant is cooled down and condensed, a pair of header tanks elongated vertically and connected to both ends of the tubes, and a refrigerant receiver for reserving liquid refrigerant therein integrally connected to one of the header tanks which has an inlet joint for receiving overheated refrigerant from a compressor. The inner space of the header tank to which the receiver is connected is divided by a separator into an upper space for receiving the overheated refrigerant and a lower space for receiving refrigerant cooled down in the heat exchanging core. The receiver is connected integrally to the header tank so that it does not overlap with the upper space of the header tank in order to minimize heat transfer from the upper space to the receiver. Thus, the liquid refrigerant reserved in the receiver does not evaporate therein, and a whole space of the receiver is utilized for reserving the liquid refrigerant therein, enabling to fill additional refrigerant in the system without causing a sub-cool temperature rise.