Abstract:
The present invention relates to an electron tube comprising, at least, a cathode electrode, a face plate having a photocathode, and an electron entrance surface provided at a position where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube according to the present invention has a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
Abstract:
To provide an electron tube having good airtightness and being appropriate for mass production, indium affixed to the inner surface of a sealing metal support member is provided between a side tube and input faceplate. The input faceplate is pushed against the side tube. As a result, the indium is squeezed by a pressure receiving surface provided on the end face of the side tube. Since the pressure receiving surface is in a generally declining shape from the inside out, the force of the pressing surface causes the indium to flow outward toward the sealing metal support member. Therefore, the indium is firmly affixed to the pressure receiving surface, and the side tube and input faceplate can be reliably sealed by the indium.
Abstract:
The present invention relates to an electron tube includes, at least, a cathode electrode and a face plate having a photocathode which are arranged at one end of a body, and a stem arranged at the other end of the body for defining the position of an electron entrance surface where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube in accordance with the present invention comprises a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
Abstract:
There is disclosed a photocathode comprising:a photoelectric conversion layer for internally exciting photoelectrons in response to incident photons; a semiconductor layer having a photoelectron emission surface for emitting the photoelectrons generated and accelerated in the photoelectric conversion layer from the photoelectron emission surface; an upper surface electrode formed on the photoelectron emission surface of the semiconductor layer; and a lower surface electrode formed on the semiconductor layer so that the lower surface electrode is opposite to the upper surface electrode through the semiconductor layer, the upper surface electrode being divided so as to provide a plurality of pixel electrodes which are electrically insulated from each other, the plurality of pixel electrodes being respectively connected to a plurarity of bias application wires.
Abstract:
An electron tube in which a side tube and a faceplate are sealed together using a malleable metal with a low melting point. The metal is made to spread out along the outer surface of the faceplate due to pressure from a first sealing portion of a sealing metal support member and along the peripheral surface of the electron tube due to pressure from a second sealing portion of the sealing metal support member. Accordingly, the outer side of the corner portion formed by the faceplate and the side tube is covered with the metal. This construction not only reliably secures the input faceplate to the side tube, but also is extremely effective in preserving the airtightness of the electron tube. Since the first sealing portion is pressed toward the faceplate, an appropriate pressure can be applied to the metal interposed between the first sealing portion and the faceplate, improving the sealability of the metal against the faceplate and the first sealing portion. This construction is also appropriate for mass production of electron tubes.
Abstract:
This invention relates to an electron tube which stabilizes the orbits of electrons accelerated and focused by an electron lens and has a structure for effectively suppressing noise generated due to discharge. This electron tube has, at two ends of an insulating container, a cathode electrode and an anode electrode which constitute the electron lens. Particularly, in the electron tube, one end of the cathode electrode and a photocathode are supported by a conductive member arranged at one end of the insulating container, and the cathode electrode is electrically connected to the photocathode. The cathode electrode partially extends to a stem along the inner wall of the insulating container and is tapered toward the stem so that the distal end portion of the cathode electrode is separated from the inner wall of the insulating container. Therefore, the electron tube realizes, regardless of the size of the insulating container, a structure for preventing the insulating container from being charged and suppressing discharge followed by light emission between the cathode electrode and the insulating container.
Abstract:
This invention relates to a semiconductor photo-electron-emitting device for emitting photoelectrons excited from the valence band to the conduction band by incident photons on a semiconductor layer. The device includes a Schottky electrode formed on the emitting surface on a surface of the semiconductor layer, and a conductor layer formed on a surface opposite to the emitting surface. A set bias voltage is applied between the Schottky electrode and the conductor layer to accelerate photoelectrons generated by the excitation of incident photons to the emitting surface and to transfer the accelerated photoelectrons from an energy band of a smaller effective mass to an energy band of a larger effective mass.
Abstract:
The photoelectric surface of a photocathode made of a semiconductor single crystal is made minutely rough and, accordingly, lusterless, so that the transmissivity of a polarized light beam incident on the photoelectric surface is almost unaffected by the direction of electric field vector of the beam.