Abstract:
Various embodiments are generally directed to a surgical probe with shape-memory material, such as a probe with a set of light sources, for instance. Some embodiments are particularly directed to a cannula with a shape-memory material that is used to secure a window. In one or more embodiments, for example, an apparatus for surgical use may include a cannula with a shape-memory material in an austenitic phase. In some embodiments, the window may be positioned at an opening of the cannula when the shape-memory material is in a martensitic phase. In some embodiments, transitioning the shape-memory material from the martensitic phase to the austenitic phase secures the window in position at the opening of the cannula.
Abstract:
A surgical probe system comprising a surgical probe having a probe needle, an optical fiber incorporated onto the probe needle, wherein a proximal end of the optical fiber is connected to a light source and a distal end of the optical fiber projects illumination light from the light source over a tip of the probe needle; and an adjustment mechanism that varies the illumination light between a first beam having a first numerical aperture that facilitates vitreous visualization and a second beam having a second numerical aperture that facilitates background illumination, wherein the second numerical aperture is larger than the first numerical aperture.
Abstract:
In some embodiments, an illuminated microsurgical instrument system includes a microsurgical instrument having a distally projecting tubular member arranged to perform a medical procedure. The tubular member has a distal tip and an outer surface, the outer surface having a flat surface formed therein. The instrument includes a sheath member surrounding a portion of the tubular member and extending toward the distal tip of the tubular member and an optical fiber extending along a length of the flat surface between the tubular member and the sheath member. The instrument may include an opening such as a slot in the distal end of the sheath member to direct exiting air away from the tip of the optical fiber. The instrument may further include a slack chamber, collar structure, and fiber guard member to support and guide the optical fiber to the distal tip.
Abstract:
Devices, systems, and methods that utilize a mechanical structure, such as a lever arm or a flexure mechanism, and an electrically energizable member, such as an actuator, to impart motion to an optical fiber positioned within an imaging probe are provided. In some embodiments, an ophthalmic imaging probe can include a handle; a cannula coupled to the handle; an optical fiber positioned at least partially within the handle and the cannula, the optical fiber configured to receive an imaging light from an imaging light source and guide the imaging light to an optical element positioned within a distal portion of the cannula; and an actuator system configured to impart motion to the optical fiber, the actuator system including a mechanical structure and an electrically energizable member configured to selectively impart motion to the mechanical structure upon the electrically energizable member being electrically energized.
Abstract:
An optical light scanning probe is presented, the probe comprising a handle, shaped for grasping by a user; a cannula, protruding from a distal portion of the handle with an outer diameter smaller than 20 gauge; an optical fiber with a distal fiber-portion off a probe-axis, configured to receive a light from a light-source at a proximal fiber-portion, and to emit the received light at the distal fiber-portion; a fixed beam forming unit, disposed at a distal portion of the cannula, configured to receive the light from the distal fiber-portion, and to deflect the received light toward a target region; and a fiber actuator, housed at least partially in the handle, configured to move the distal fiber-portion to scan the deflected light along a scanning curve in the target region.
Abstract:
Certain aspects of the present disclosure provide a thermally robust laser probe assembly comprising a cannula, wherein one or more optical fibers extend at least partially through the cannula for transmitting laser light from a laser source to a target location. The probe assembly further comprises a lens housed in the cannula and a protective component press-fitted to the distal end of the cannula, wherein the lens is positioned between the one or more optical fibers and the protective component.
Abstract:
A surgical probe system comprising a surgical probe having a probe needle, a first optical fiber incorporated onto the probe needle, wherein a distal end of the first optical fiber projects a first beam of illumination light over a tip of the probe needle when activated; a second optical fiber incorporated onto the probe needle, wherein a distal end of the second optical fiber projects a second beam of illumination light over the tip of the probe needle when activated; and a third optical fiber incorporated onto the probe needle, wherein a distal end of the third optical fiber projects a third beam of light over the tip of the probe needle to perform a distance measurement between the probe needle and a patient's when activated, wherein the distance measurement is displayed or audibly presented to aid a user in probe positional awareness with respect to the patient's retina.
Abstract:
Devices, systems, and methods that utilize a technique of changing a position of the set of optical fibers of the fiber bundle in cooperation with the scanning of the imaging light across a proximal surface of the fiber bundle to improve the resolution of the scanned image. In particular, a bundle actuator can be provided to change a position of the set of optical fibers of the fiber bundle in cooperation with a scanning of the imaging light across the proximal surface of the fiber bundle to cover the areas of the gaps between the optical fibers and to increase a resolution of the scanned image.
Abstract:
Devices, systems, and methods that utilize a technique of changing a position of the set of optical fibers of the fiber bundle in cooperation with the scanning of the imaging light across a proximal surface of the fiber bundle to improve the resolution of the scanned image. In particular, a bundle actuator can be provided to change a position of the set of optical fibers of the fiber bundle in cooperation with a scanning of the imaging light across the proximal surface of the fiber bundle to cover the areas of the gaps between the optical fibers and to increase a resolution of the scanned image.
Abstract:
The imaging probe can comprise a housing, having a proximal region configured to be coupled to an optical cable; a cannula, extending from a distal region of the housing; an optical guide, positioned partially in the housing and partially in the cannula, configured to receive an imaging light from the cable in the proximal region of the housing, and to guide the imaging light towards a distal end of the cannula; an optical focusing element, configured to receive the imaging light from the optical guide, and to emit a focused imaging light; an elastomeric optical element, configured to receive the focused imaging light from the optical focusing element, and to be deformable to redirect the focused imaging light; and an actuator system, configured to deform the elastomeric optical element to redirect the focused imaging light.