Abstract:
Frequency-based mode mixing may be used to homogenize different modes in an optical fiber used for surgical illumination. A laser modulator may introduce frequency modulation to laser light to generate a homogeneous illumination field due to increased mode mixing in the optical fiber.
Abstract:
Frequency-based mode mixing may be used to homogenize different modes in an optical fiber used for surgical illumination. A laser modulator may introduce frequency modulation to laser light to generate a homogeneous illumination field due to increased mode mixing in the optical fiber.
Abstract:
A retinal treatment system for delivering therapeutic agents to a target location with a retina is disclosed herein. The retinal treatment system includes a console having a control system and a handheld device coupled to the control system. The handheld device includes an inner tube disposed within an outer tube and being axially moveable within the outer tube. The inner tube has a perforating tip that is configured to perforate an inner limiting membrane of the retina. The handheld device further includes a chamber coupled to a proximal end of the inner tube that is configured to receive a fluid containing therapeutic agents injectable from the perforating tip. The control system of the retinal treatment system permits a user to maintain a position of the handheld device relative to the retina and activate an injection of a portion of the fluid through the inner tube into the retina.
Abstract:
Focusing optics for mode mixing may be used to homogenize different modes in an optical fiber used for surgical illumination. A vibration stage may impart mechanical motion to a condenser lens to generate a homogeneous illumination field from a coherent light source.
Abstract:
Fiber-based mode mixing techniques may be used to homogenize different modes in an optical fiber used for surgical illumination. A vibrating fiber mechanism may impart mechanical motion to a portion of the optical fiber to generate a homogeneous illumination field from a coherent light source.
Abstract:
An ophthalmic illumination system includes a light source generating a source light beam and a beam splitter splitting the source light beam into first and second light beams. A first attenuator is located in a path of the first light beam and a second attenuator is located in the path of the second light beam, the first and second attenuators operable to change the intensities of the first and second light beams, respectively. A first optical fiber port is configured for connection to a first optical fiber for delivering the first light beam to a patient's eye and a second optical fiber port is configured for connection to a second optical fiber for delivering the second light beam to the patient's eye. A control unit is communicatively coupled to the first and second attenuators and is operable to adjust the attenuators to control the intensities of the light beams delivered to the patient's eye.
Abstract:
An ophthalmic surgical microscope can include a movable optical element positioned in an optical pathway of light reflected from a surgical field. The movable optical element can be configured to oscillate in a direction along the optical pathway. The microscope can include an actuator coupled to the movable optical element and configured to move in response to a control signal. The microscope can include a computing device in communication with the actuator and configured to generate the control signal to move the movable optical element. In some embodiments, the computing device is configured to generate the control signal to move the movable optical element with an oscillation frequency greater than the critical flicker fusion rate.
Abstract:
According to some examples, a method for Optical Coherence Tomography (OCT) image modification includes receiving an OCT image of a region of interest of patient tissue from an OCT imaging system configured to direct an OCT beam at the region of interest and determining that an OCT transparent instrument is within the OCT image. The method further includes detecting an artifact in the OCT image, the artifact resulting from the OCT transparent instrument being within a path of the OCT beam. In response to detecting the artifact, the method further includes creating an image modification plan to remove the artifact from the OCT image. The method further includes executing the image modification plan to remove the artifact from the OCT image.
Abstract:
A surgical imaging system can comprise a light source, configured to generate an imaging light beam; a beam guidance system, configured to guide the imaging light beam from the light source; a beam scanner, configured to receive the imaging light from the beam guidance system, and to generate a scanned imaging light beam; a beam coupler, configured to redirect the scanned imaging light beam; and a wide field of view (WFOV) lens, configured to guide the redirected scanned imaging light beam into a target region of a procedure eye.
Abstract:
A method of imaging in an ophthalmic surgical procedure can include determining an excitation wavelength of light associated with a vital stain; transmitting light having the excitation wavelength; determining an emission wavelength of light associated with the vital stain; filtering light using a first optical element to allow transmission of light having the emission wavelength and to block light having the excitation wavelength. An ophthalmic surgical imaging system can include a light source, one or more optical elements, an image sensor, a computing device, and/or a display device to visualize target biological tissue stained with a fluorescent vital stain. A method of imaging in an ophthalmic surgical procedure can include determining a wavelength of light that increases the visual contrast of a vital stain; transmitting light having the determined wavelength; and receiving a reflection of the transmitted light such that target biological tissue stained by the vital stain is accentuated.