Abstract:
The present invention relates to asparaginase variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants. The invention further relates to a process of producing a fermentation product, comprising: liquefying a starch-containing material to dextrins with an alpha-amylase in the presence of an asparaginase of the invention; saccharifying the dextrins to a sugar with a glucoamylase; and fermenting the sugar using a fermenting organism.
Abstract:
The present invention relates to variants of alpha amylase. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
Abstract:
The present invention relates to asparaginase variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants. The further relates to a process of producing a fermentation product, comprising: liquefying a starch-containing material to dextrins with an alpha-amylase in the presence of an asparaginase of the invention; saccharifying the dextrins to a sugar with a glucoamylase; and fermenting the sugar using a fermenting organism.
Abstract:
The present invention relates to a variant pullulanase, having increased thermo-stability and/or increased thermo-activity compared to a parent pullulanase, comprising a substitution at least a one position selected from a position corresponding to positions 432, 486, 370, 17, 77, 103, 106, 107, 190, 196, 197, 262, 279, 283, 321, 367, 375, 382, 399, 401, 402, 411, 412, 434, 435, 443, 446, 459, 460, 479, 490, 498, 514, 529, 531, 533, 541, 545, 581, 583, 595, 649, 665, 688, 700, 709, 804, 811 of SEQ ID NO: 1, and optionally a deletion of one or more, e.g., all amino acids at positions 821, 822, 823, 824, 825, 826, 827, and 828, wherein the variant has pullulanase activity, and wherein the variant has at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to a parent alpha amylase selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5. Further aspect the present invention relates to a process for liquefying starch-containing material at a temperature above the initial gelatinization temperature using an alpha-amylase and a thermo-stable pullulanase of the invention.
Abstract:
The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
Abstract:
The present invention relates to a variant pullulanase, wherein the pullulanase comprises at least the following combination of substitutions: N368G+N393A+Q431E+L432F+A492A,S+N610R+G624S+T631S+S632C, and optionally further comprises N222P+Q252A+Q256R; wherein the variant has pullulanase activity, and wherein the variants have at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3. Further aspect the present invention relates to a process for liquefying starch-containing material at a temperature above the initial gelatinization temperature using an alpha-amylase and a thermo-stable pullulanase of the invention.
Abstract:
The present invention relates to a variant pullulanase, wherein the pullulanase comprises at least the following combination of substitutions: N368G+N393A+Q431E+L432F+A492A,S+N610R+G624S+T631S+S632C, and optionally further comprises N222P+Q252A+Q256R; wherein the variant has pullulanase activity, and wherein the variants have at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3. Further aspect the present invention relates to a process for liquefying starch-containing material at a temperature above the initial gelatinization temperature using an alpha-amylase and a thermo-stable pullulanase of the invention.
Abstract:
The present invention relates to asparaginase variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants. The invention further relates to a process of producing a fermentation product, comprising: liquefying a starch-containing material to dextrins with an alpha-amylase in the presence of an asparaginase of the invention; saccharifying the dextrins to a sugar with a glucoamylase; and fermenting the sugar using a fermenting organism.
Abstract:
The present invention relates to variants of alpha amylase. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
Abstract:
The present invention relates to protease variants, having improved properties compared to the parent protease, in particular variants of a serine protease belonging to family 53 derived from a strain of Meripilus giganteus. The variants according to the invention have in particular increased thermo-stability, e.g., increased residual activity after 30 min at a temperature in the range from 55 to 60° C. and/or increased thermal denaturation temperature, compared to the parent Meripilus giganteus protease. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.