摘要:
A photoelectric conversion element includes a first electrode section; a second electrode section; an electron-transporting section between the first electrode section and the second electrode section; a light-absorbing section; and a hole-transporting section. The hole-transporting section has a peak that reaches maximum at a Raman shift of 1575 cm−1±10 cm−1 and a peak that reaches maximum at a Raman shift of 1606 cm −1±10 cm−1 in a Raman spectrum obtained by emitting laser light having a wavelength of 532 nm; and has a peak intensity ratio A/B of 0.80 or more, the peak intensity ratio A/B being obtained from a maximum peak intensity A of the peak that reaches maximum at 1575 cm−1±10 cm−1 and a maximum peak intensity B of the peak that reaches maximum at 1606 cm−1±10 cm−1.
摘要:
A solar cell module includes a first substrate and a plurality of photoelectric conversion elements disposed on the first substrate. Each of the plurality of photoelectric conversion elements includes a first electrode, an electron transport layer, a perovskite layer, a hole transport layer, and a second electrode. In at least two of the photoelectric conversion elements adjacent to each other, the hole transport layers are extended continuous layers; and the first electrodes, the electron transport layers, and the perovskite layers in the at least two of the photoelectric conversion elements adjacent to each other are separated by the hole transport layer. The hole transport layer includes, as hole transport material, a polymer having a weight average molecular weight of 2,000 or more or a compound having a molecular weight of 2,000 or more.
摘要:
A solar cell module includes a first substrate and a plurality of photoelectric conversion elements disposed on the first substrate. Each of the plurality of photoelectric conversion elements includes a first electrode, an electron transport layer, a perovskite layer, a hole transport layer, and a second electrode. In at least two of the photoelectric conversion elements adjacent to each other, the hole transport layers are extended continuous layers; and the first electrodes, the electron transport layers, and the perovskite layers in the at least two of the photoelectric conversion elements adjacent to each other are separated by the hole transport layer. The hole transport layer includes, as hole transport material, a polymer having a weight average molecular weight of 2,000 or more or a compound having a molecular weight of 2,000 or more.
摘要:
A photoelectric conversion element including: a first substrate; a first electrode; a photoelectric conversion layer; a second electrode; and a second substrate, wherein the photoelectric conversion element includes a sealing part sealing at least the photoelectric conversion layer, the sealing part is disposed so as to surround periphery of the photoelectric conversion layer, and a width of the sealing part disposed at each side has a minimum width A and a maximum width B in a width direction, and a ratio (B/A) of the maximum width B to the minimum width A is 1.02 or more but 5.0 or less.
摘要:
Provided is a photoelectric conversion element including a first electrode, an electron-transporting layer, a hole-transporting layer, and a second electrode, wherein the hole-transporting layer includes a hole-transporting material, an alkali metal salt, and a hypervalent iodine compound.
摘要:
Provided is a photoelectric conversion element including a first electrode, an electron-transporting layer, a hole-transporting layer, and a second electrode, wherein the hole-transporting layer and the second electrode are in contact with each other, and the hole-transporting layer satisfies the following formula: 0%
摘要:
Provided is a photoelectric conversion element including a first electrode, an electron-transporting layer, a hole-transporting layer, and a second electrode, wherein the hole-transporting layer and the second electrode are in contact with each other, and the hole-transporting layer satisfies the following formula: 0%
摘要:
A fabrication method includes laminating a fabrication material to form an object, and applying a release material on a surface of the object to form a release layer on the surface of the object. A surface free energy of the release material is equal to or smaller than 25 mN/m.
摘要:
A powder material for three-dimensional modeling includes a base particle and a resin covering the base particle, wherein the resin has a first absorption peak in the range of from 1,141 cm−1 to 1,145 cm−1 and a second absorption peak in the range of from 1,089 cm−1 to 1,093 cm−1 in an infrared absorption spectrum and the intensity ratio of the first absorption peak to the second absorption peak is from 0.40 to 0.70.
摘要:
A powder material for three-dimensional modeling includes a base material and a resin covering the base material, wherein the covering factor by the resin is 15 percent or more and the aspect ratio of the powder material is 0.90 or greater as calculated according to the following relation 1. Aspect ratio (average)=X1×Y1/100+X2×Y2/100+ . . . +Xn×Yn/100, Relation 1 In the Relation 1, Y1+Y2+ . . . +Yn=100 (percent), Xn represents the aspect ratio (minor axis/major axis), Yn represents an existence ratio (percent) of a particle having an aspect ratio of Xn, and n is 15,000 or greater.
摘要翻译:在关系1中,Y1 + Y2 +。 。 。 + Yn = 100(%),Xn表示长宽比(短轴/长轴),Yn表示纵横比为Xn,n为15000以上的粒子的存在比(百分比)。