Abstract:
Novel redox based systems for fuel and chemical production with in-situ CO2 capture are provided. A redox system using one or more chemical intermediates is utilized in conjunction with liquid fuel generation via indirect Fischer-Tropsch synthesis, direct hydrogenation, or pyrolysis. The redox system is used to generate a hydrogen rich stream and/or CO2 and/or heat for liquid fuel and chemical production. A portion of the byproduct fuels and/or steam from liquid fuel and chemical synthesis is used as part of the feedstock for the redox system.
Abstract:
High efficiency electricity generation processes and systems with substantially zero CO2 emissions are provided. A closed looping between the unit that generates gaseous fuel (H2, CO, etc) and the fuel cell anode side is formed. In certain embodiments, the heat and exhaust oxygen containing gas from the fuel cell cathode side are also utilized for the gaseous fuel generation. The systems for converting fuel may comprise reactors configured to conduct oxidation-reduction reactions. The resulting power generation efficiencies are improved due to the minimized steam consumption for the gaseous fuel production in the fuel cell anode loop as well as the strategic mass and energy integration schemes.
Abstract:
A reactor system comprising a first reactor assembly, a first pressure transition assembly, a second reactor assembly and a second pressure transition assembly.
Abstract:
A system for converting carbonaceous fuels is provided. The system includes a gaseous fuel conversion reactor, a solid fuel conversion reactor, and a fuel pretreatment fluidized bed reactor disposed between the gaseous fuel conversion reactor and the solid fuel conversion reactor. The fuel pretreatment fluidized bed reactor devolatilizes a solid fuel using heat to produce an off-gas and a devolatilized solid fuel. The gaseous fuel conversion reactor converts the off-gas from the fuel pretreatment fluidized bed reactor to a product gas stream comprising carbon dioxide and water. The solid fuel conversion reactor receives a mixture of oxygen carrier solids and devolatilized solid fuel from the pretreatment reactor discharge and reduces the devolatilized solid fuel with the oxygen carrier solids to convert the devolatilized solid fuel to an intermediate gas.