摘要:
Disclosed herein is a solar reactor comprising a reactor member; an aperture for receiving solar radiation, the aperture being disposed in a plane on a wall of the reactor member, where the plane is oriented at any angle other than parallel relative to the centerline of the reactor member; a plurality of absorber tubes, wherein the absorber tubes are oriented such that their respective centerlines are at an angle other than 90° relative to the centerline of the reactor member; and wherein the aperture has a hydraulic diameter that is from 0.2 to 4 times a hydraulic diameter of at least one absorber tube in the plurality of absorber tubes; and a reactive material, the reactive material being disposed in the plurality of absorber tubes.
摘要:
High efficiency electricity generation processes and systems with substantially zero CO2 emissions are provided. A closed looping between the unit that generates gaseous fuel (H2, CO, etc) and the fuel cell anode side is formed. In certain embodiments, the heat and exhaust oxygen containing gas from the fuel cell cathode side are also utilized for the gaseous fuel generation. The systems for converting fuel may comprise reactors configured to conduct oxidation-reduction reactions. The resulting power generation efficiencies are improved due to the minimized steam consumption for the gaseous fuel production in the fuel cell anode loop as well as the strategic mass and energy integration schemes.
摘要:
A system for gasifying biomass is disclosed. The system comprises a water storage tank, a water pump, a heat exchanger, a plasma torch heater, a gasifier, an ash cooler, a spray tower, a dust collector, a deacidification tower, and a desiccator. The water storage tank is connected to the water inlet of the heat exchanger; the vapor outlet of the heat exchanger is connected to the vapor inlet of the plasma torch heater; the vapor outlet of the plasma torch heater is connected to the vapor nozzle of the gasifier; the ash outlet of the gasifier is connected to the ash inlet of the ash cooler; the gas outlet of the gasifier is connected to the gas inlet of the spray tower; and the gas outlet of the spray tower is connected to the gas inlet of the heat exchanger.
摘要:
A method of converting carbon containing compounds such as coal, methane or other hydrocarbons into a liquid hydrocarbon fuel utilizes a high pressure, high temperature reactor which operates upon a blend of a carbon compound including CO2 and a carbon source, a catalyst, and steam. Microwave power is directed into the reactor. The catalyst, preferably magnetite, will act as a heating media for the microwave power and the temperature of the reactor will rise to a level to efficiently convert the carbon and steam into hydrogen and carbon monoxide.
摘要:
In a plant having integrated CO2 removal, for pig iron production or synthesizing gas, at least part of the offgas or synthesis gas is discharged as export gas from the plant, optionally collected in an export gas container and subsequently thermally utilized in a gas turbine. The offgas from the gas turbine is fed to a waste heat boiler for generation of steam. To reduce the addition of high-grade fuel gases, at least part of the tailgas from the CO2 removal plant is mixed into the export gas upstream of the gas turbine as a function of the joule value of the export gas after addition of the tailgas. The proportion of tailgas is increased when the joule value of the export gas goes above a predefined maximum joule value and the proportion of tailgas is reduced when the joule value of the export gas drops below a predefined minimum joule value.
摘要:
A method includes providing a gasifier with a fuel source comprising a heavy oil, a light oil, and recovered soot. The gasifier may gasify the fuel source to generate a syngas and soot. The method also includes recovering the soot in a first separation unit that may receive a portion of the heavy oil and separate the soot from an extraction oil used to recover the soot. The first separation unit generates soot bottoms that include the portion of the heavy oil and the recovered soot. The method also includes flowing a first separation co-fractionate to a second separation unit. The first separation co-fractionate includes the extraction oil and the light oil. The second separation unit may separate the extraction oil and the light oil, and direct the light oil towards the first separation unit. The method further includes mixing the soot bottoms from the first separation unit with the light oil from the second separation unit to generate the fuel source and directing the fuel source to the gasifier for gasification.
摘要:
The invention relates to the field of power engineering and, more specifically, to systems for generating electricity based on the use of solid fuel, primarily brown and black coal. In the coal gasification method, a gasifier is fed with a uniform activated coal water fuel, the droplets of which are of equal size and the coal particles in said droplets having a similar granulometric composition. The fuel droplets are introduced intermittently in separate doses of fuel with a certain amount of motion being imparted thereto. The milling of the coal for the activated coal water fuel preparation method is adjusted adaptively according to the criterion of the actual amount of volatile substances given off by the coal, and the coal is thoroughly classified according to its granulometric composition. The invention provides for more extensive recovery of thermal energy from coal and more efficient electricity generation.
摘要:
The present invention relates generally to processes for preparing agglomerated particulate low-rank coal feedstocks of a particle size suitable for reaction in certain gasification reactors and, in particular, for coal gasification. The present invention also relates to integrated coal gasification processes including preparing and utilizing such agglomerated particulate low-rank coal feedstocks.
摘要:
Systems and methods for starting a gasifier are provided. In the method, a heated start-up medium can be fed to a gasifier operating at a first temperature. Heat can be transferred from the heated start-up medium to the gasifier to increase the temperature of the gasifier from the first temperature to an intermediate temperature sufficient to auto-ignite a start-up fuel. A start-up fuel and an oxidant can be fed to the gasifier after the temperature within the gasifier is increased to the intermediate temperature. At least a portion of the start-up fuel can be combusted within the gasifier to produce a combustion gas. Heat can be transferred from the combustion gas to the gasifier to increase the temperature of the gasifier to an operating temperature, wherein the operating temperature is sufficient to gasify at least a portion of a hydrocarbon feedstock.
摘要:
In a plant having integrated CO2 removal, for pig iron production or synthesizing gas, at least part of the offgas or synthesis gas is discharged as export gas from the plant, optionally collected in an export gas container and subsequently thermally utilized in a gas turbine. The offgas from the gas turbine is fed to a waste heat boiler for generation of steam. To reduce the addition of high-grade fuel gases, at least part of the tailgas from the CO2 removal plant is mixed into the export gas upstream of the gas turbine as a function of the joule value of the export gas after addition of the tailgas. The proportion of tailgas is increased when the joule value of the export gas goes above a predefined maximum joule value and the proportion of tailgas is reduced when the joule value of the export gas drops below a predefined minimum joule value.