Abstract:
A silicon crystallization system includes a vibration device for vibrating a linear laser beam along a longer-axis direction of the linear laser beam. A vibration frequency at which the laser beam is vibrated is periodically generated and randomly changes within a predetermined range.
Abstract:
A silicon crystallization system includes a vibration device for vibrating a linear laser beam along a longer-axis direction of the linear laser beam. A vibration frequency at which the laser beam is vibrated is periodically generated and randomly changes within a predetermined range.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same is provided. Semiconductor layers of driving transistors located in two adjacent pixels included in the OLED display device may extend in different lengthwise directions. Thus, striped stains of the OLED display device can be improved.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same is provided. Semiconductor layers of driving transistors located in two adjacent pixels included in the OLED display device may extend in different lengthwise directions. Thus, striped stains of the OLED display device can be improved.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same is provided. Semiconductor layers of driving transistors located in two adjacent pixels included in the OLED display device may extend in different lengthwise directions. Thus, striped stains of the OLED display device can be improved.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the same is provided. Semiconductor layers of driving transistors located in two adjacent pixels included in the OLED display device may extend in different lengthwise directions. Thus, striped stains of the OLED display device can be improved.
Abstract:
A thin film transistor and a fabrication method thereof, in which one excimer laser annealing (ELA) makes a pixel portion and a driver portion different from each other in surface roughness and grain size. The thin film transistor includes: a substrate including a pixel portion and a driver portion; a first semiconductor layer disposed in the pixel portion and having a first surface roughness; a second semiconductor layer disposed in the driver portion and having a second surface roughness smaller than the first surface roughness; a gate insulating layer formed on the substrate including the first and second semiconductor layers; a first gate electrode placed to correspond to the first semiconductor layer on the gate insulating layer; a second gate electrode placed to correspond to the second semiconductor layer on the gate insulating layer; an interlayer insulating layer formed on the substrate including the first and second gate electrodes; first source and drain electrodes formed on the interlayer insulating layer and electrically connected with the first semiconductor layer; and second source and drain electrodes formed on the interlayer insulating layer and electrically connected with the second semiconductor layer.
Abstract:
A method of measuring a degree of crystallinity of a polycrystalline silicon substrate includes obtaining a Raman spectrum graph by irradiating a polycrystalline silicon substrate with a laser beam; and calculating a degree of crystallinity of the polycrystalline silicon substrate from the Raman spectrum graph using the following formula: (degree of crystallinity)=(area of polycrystalline peak)/[(area of amorphous peak)+(area of polycrystalline peak)].
Abstract:
A method for manufacturing a thin film transistor having a more uniform threshold voltage, and a flat panel display device that includes the thin film transistor. The method includes forming an amorphous silicon film on a substrate, removing a silicon oxide layer from a surface of the amorphous silicon film, forming a silicon oxide layer on the surface of the amorphous silicon film, and forming a polycrystalline Si layer by crystallizing the amorphous silicon film.
Abstract:
A thin film transistor and a fabrication method thereof, in which one excimer laser annealing (ELA) makes a pixel portion and a driver portion different from each other in surface roughness and grain size. The thin film transistor includes: a substrate including a pixel portion and a driver portion; a first semiconductor layer disposed in the pixel portion and having a first surface roughness; and a second semiconductor layer disposed in the driver portion and having a second surface roughness smaller than the first surface roughness.