Abstract:
Disclosed is an electrochemical probe system and an electrical excitation method, configured in a bulk sorting system, and used to identify the composition of metals and alloys.
Abstract:
Hybrid vehicle design circuitry quantifies values for utility/disutility variables of a hybrid vehicle design by evaluating a hybrid vehicle model over a collection of drive cycles/routes. The utility/disutility values include at least one of: total time or additional time beyond a reference time needed for the hybrid vehicle design to complete the drive cycles/routes, a fraction or number of the drive cycles/routes for which the hybrid vehicle design fails to achieve a target velocity, and amount of time or distance over which the hybrid vehicle design fails to achieve a target acceleration or the target velocity over the drive cycles/routes. The hybrid vehicle design circuitry calculates one or more specifications of a hybrid vehicle design based on the utility/disutility values.
Abstract:
A hybrid vehicle includes at least one axle, an energy storage device disposed within the hybrid vehicle, a fuel consuming engine, a power boosting feature, and a controller. The fuel consuming engine is operably connected to selectively provide power to at least one of the energy storage device and the at least one axle. The engine is capable of providing at least the mean but less than a peak power to drive the hybrid vehicle over a typical route. The power boosting feature is configured to provide the fuel consuming engine with additional power to achieve a desired power to accelerate the hybrid vehicle. The controller is adapted to selectively control power flow to the one or more axles from one or more of the energy storage device, the engine, and the power boosting feature to achieve the desired power.
Abstract:
A subassembly for an adsorption chiller includes an adsorption component that includes a plurality of plates arranged in a stack. Refrigerant passages are defined between refrigerant sides of adjacent pairs of the plates in the stack. An adsorbent material is disposed within the refrigerant passages.
Abstract:
A transient electronic device includes electronic elements (e.g., an SOI- or chip-based IC) and a trigger mechanism disposed on a frangible glass substrate. The trigger mechanism includes a switch that initiates a large trigger current through a self-limiting resistive element in response to a received trigger signal. The self-limiting resistive element includes a resistor portion that generates heat in response to the trigger current, thereby rapidly increasing the temperature of a localized (small) region of the frangible glass substrate, and a current limiting portion (e.g., a fuse) that self-limits (terminates) the trigger current after a predetermined amount of time, causing the localized region to rapidly cool down. The frangible glass substrate is engineered such that a stress profile produced by the rapid heating/cooling of the localized region generates an initial fracture force that subsequently propagates throughout the glass substrate, whereby sufficient potential energy is released to powderize the electronic elements.
Abstract:
Disclosed is an electrochemical probe system and an electrical excitation method, configured in a handheld sorting system, and used to identify the composition of metals and alloys.
Abstract:
A subassembly for an adsorption chiller includes an adsorption component that includes a plurality of plates arranged in a stack. Refrigerant passages are defined between refrigerant sides of adjacent pairs of the plates in the stack. An adsorbent material is disposed within the refrigerant passages.
Abstract:
Systems and methods for controlling and operating a hybrid vehicle having a high degree of hybridization are disclosed. A power flow control system predicts vehicle power demand to drive the hybrid vehicle based on changing conditions during operation of the hybrid vehicle. The power flow control system controls the power flow so as to provide power to drive the hybrid vehicle based on the predicted vehicle power demand, wherein the predicted vehicle power demand is greater than a maximum
Abstract:
A transient electronic device includes electronic elements (e.g., an SOI- or chip-based IC) and a trigger mechanism disposed on a frangible glass substrate. The trigger mechanism includes a switch that initiates a large trigger current through a self-limiting resistive element in response to a received trigger signal. The self-limiting resistive element includes a resistor portion that generates heat in response to the trigger current, thereby rapidly increasing the temperature of a localized (small) region of the frangible glass substrate, and a current limiting portion (e.g., a fuse) that self-limits (terminates) the trigger current after a predetermined amount of time, causing the localized region to rapidly cool down. The frangible glass substrate is engineered such that a stress profile produced by the rapid heating/cooling of the localized region generates an initial fracture force that subsequently propagates throughout the glass substrate, whereby sufficient potential energy is released to powderize the electronic elements.
Abstract:
A transient electronic device includes electronic elements (e.g., an SOI- or chip-based IC) and a trigger mechanism disposed on a frangible glass substrate. The trigger mechanism includes a switch that initiates a large trigger current through a self-limiting resistive element in response to a received trigger signal. The self-limiting resistive element includes a resistor portion that generates heat in response to the trigger current, thereby rapidly increasing the temperature of a localized (small) region of the frangible glass substrate, and a current limiting portion (e.g., a fuse) that self-limits (terminates) the trigger current after a predetermined amount of time, causing the localized region to rapidly cool down. The frangible glass substrate is engineered such that a stress profile produced by the rapid heating/cooling of the localized region generates an initial fracture force that subsequently propagates throughout the glass substrate, whereby sufficient potential energy is released to powderize the electronic elements.