Abstract:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.
Abstract:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.
Abstract:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.
Abstract:
A terminal apparatus (1) which is a radio transmitting/receiving apparatus receives, from a femto cell base station (home eNB), a pilot channel signal for reception quality measurement and a synchronization channel signal for synchronization. The terminal apparatus (1) has a whitelist stored therein indicative of an accessible femto cell, and determines whether or not a CSG cell of handover destination is accessible based on a PCI of the CSG cell acquired from the synchronization channel and the whitelist. The terminal apparatus (1) then adds the PCI and a CGI to a measurement report for reception quality, and transmits the measurement report to a macro eNB (base station apparatus (2)). In this way, it is possible to suppress wasteful signaling and prevent unnecessary resources from being reserved even when two or more CSG cells that use the same PCI are present in the macro cell.
Abstract:
A terminal apparatus (1) which is a radio transmitting/receiving apparatus receives, from a femto cell base station (home eNB), a pilot channel signal for reception quality measurement and a synchronization channel signal for synchronization. The terminal apparatus (1) has a whitelist stored therein indicative of an accessible femto cell, and determines whether or not a CSG cell of handover destination is accessible based on a PCI of the CSG cell acquired from the synchronization channel and the whitelist. The terminal apparatus (1) then adds the PCI and a CGI to a measurement report for reception quality, and transmits the measurement report to a macro eNB (base station apparatus (2)). In this way, it is possible to suppress wasteful signaling and prevent unnecessary resources from being reserved even when two or more CSG cells that use the same PCI are present in the macro cell.
Abstract:
Provided are a base station, a terminal, a band allocation method, and a downlink data communication method in which a mapping method for synchronization signals and report signals is implemented with high resource usage efficiency when a first system in which an independent single communication is allocated to a unit band co-exists with a second system in which a plurality of unit bands can be allocated to a single communication. In a base station, an OFDM signal generation unit maps primary synchronization channel (P-SCH), secondary synchronization channel (S-SCH), primary broadcast channel (P-BCH), and dynamic broadcast channel (D-BCH), which can be decoded by both an LTE terminal and an LTE+ terminal, to some of a plurality of unit bands. The OFDM signal generation unit also maps D-BCH+, which can be decoded only by an LTE+ terminal, to all of the plurality of unit bands to produce a multiplexed transmission signal.
Abstract:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.
Abstract:
When a handover request for performing a handover of a terminal (70) from a macro cell C1 to a CSG cell C2 is received from an SeNB 10 (S8), a base station (TeNB) (40) of the CSG cell C2 transmits a handover response in accordance with a handover enabled/disabled state (S12). The handover response includes an identifier of the terminal (70) in the CSG cell C2. Upon receiving the response, the SeNB (10) notifies the identifier to the terminal (70) (S14). The TeNB (40) repeatedly transmits a dedicated signal containing a handover command via a dedicated channel set using the identifier at an interval shorter than a gap period (S18). Accordingly, whether or not access is permitted can be judged promptly and a smooth handover can be realized.
Abstract:
A macrocell base station controls to reduce interference between cells by a downlink signal of the macrocell base station with specific timing, the interference which a downlink signal of a low transmission power cell suffers for a wireless terminal. A low transmission power cell base station decides measurement timing with which the wireless terminal measures reception quality of the low transmission power cell based on information about the specific timing, and sends a setting message including a parameter according to the measurement timing to the wireless terminal. The wireless terminal measures reception quality with the measurement timing indicated by the parameter, and when the wireless terminal satisfies a condition for executing an event based on the measured result, the wireless terminal sends a reception quality measurement message including information indicating that the measurement is made with the measurement timing to the low transmission power cell base station.
Abstract:
In a wireless communication terminal in a wireless communication system for performing a control not to transmit signals, or to transmit signals with a reduction in a transmission power by a part of radio resources for a downlink signal in a cell provided by a base station, the terminal receives control information in generating a report related to a measurement result of the cell provided by the base station, monitors a state of a radio link with an own cell, and performs measurement on reception of the downlink signal. If an instruction for restricting the measurement to a part of the radio resources is included in the control information from the base station after the radio link failure occurs, the terminal generates and transmits a radio link failure report including the measurement result in the radio resources as instructed when the radio link failure occurs.