Abstract:
A power conversion system includes a converter circuit and a control circuit. The control circuit controls, through use of PWM signals, high potential-side switches for a U-phase circuit, a V-phase circuit, and a W-phase circuit, respectively. The control circuit alternately switches between a first modulation method and a second modulation method at each half carrier period of each of the PWM signals. In the first modulation method, the control circuit determines, as a first value, a duty ratio of the PWM signal for one of a U phase, a V phase, and a W phase that has a maximum phase voltage. In the second modulation method, the control circuit determines, as a second value, the duty ratio of the PWM signal for one of the U phase, the V phase, and the W phase that has a minimum phase voltage.
Abstract:
A power conversion apparatus that switches, with a relay unit, from a disconnected state to a connected state between a connector and at least one of a commercial power system and a load while a switching device is in an off state.
Abstract:
A power conversion system includes a first capacitor, an isolated type converter circuit, and a control circuit. The first capacitor is connected to the direct-current power supply via an inrush current prevention circuit. The inrush current prevention circuit is switchable at least between a high-impedance state and a low-impedance state. The converter circuit includes a transformer, and the first capacitor is connected to a primary winding wire of the transformer. The control circuit controls the inrush current prevention circuit and the converter circuit to cause the converter circuit to start operating, and then, the control circuit switches the inrush current prevention circuit from the high-impedance state to the low-impedance state.
Abstract:
A power conversion device includes first and second terminals connected to a DC power source, third and fourth terminals connected to a commercial power system or a load, a transformer including a primary winding having seventh and eighth terminals and a secondary winding having fifth and sixth terminals, an inverter circuit connected between the first and second terminals and the seventh and eighth terminals, a converter circuit connected between the fifth and sixth terminals and the third and fourth terminals, a diode bridge including first and second AC input terminals connected to the fifth and sixth terminals, respectively, and first and second DC output terminals, a first capacitor connected between the first and second DC output terminals, and a first resistor connected in parallel with the first capacitor between the first and second DC output terminals.
Abstract:
A power conversion system according to the present disclosure includes a first circuit, a second circuit, and a third circuit. The first circuit has a first external terminal thereof electrically connected to either an AC power supply or an AC load. In the power conversion system, a first internal terminal, a second internal terminal, and a third internal terminal are electrically connected to the same connection unit. The second circuit controls a current or power being input to, or output from, the second circuit itself such that the current or the power is synchronized with power ripples caused by the AC power supply or the AC load. Either the AC power supply or the AC load is electrically connected to the first circuit.
Abstract:
A power converter includes first to fourth terminals, a transformer including primary and secondary windings, an inverter connected between the first and second terminals and the primary winding, a converter connected between fifth and sixth terminals, and a controller. The converter includes first to eighth switch circuits each including a diode and a switch connected in parallel. When a voltage between the fifth and sixth terminals has first polarity, the controller controls the first switch circuit to be in on-state during a first on-period and controls the fifth switch circuit to be in on-state during a second on-period completely including the first on-period. When the voltage between the fifth and sixth terminals has second polarity, the controller controls the second switch circuit to be in on-state during a third on-period and controls the sixth switch circuit to be in on-state during a fourth on-period completely including the third on-period.
Abstract:
A power conversion apparatus includes an inductor inserted between a secondary winding and a switching device, and an auxiliary switching device inserted between the secondary winding and the switching device in parallel to the inductor. The auxiliary switching device is in an off state in a power supply mode in which an output voltage and an output current of a connector have the same polarity. The auxiliary switching device is in an on state in a power regeneration mode in which the output voltage and the output current of the connector have different polarities.
Abstract:
An electric power converter includes a bridge circuit, a transformer, a rectifier circuit, and a smoothing circuit. The rectifier circuit includes a first secondary-side diode disposed in a first current path extending between one end of a secondary winding and a first terminal of the smoothing circuit, a second secondary-side diode disposed in a second current path extending between the other end of the secondary winding and the first terminal of the smoothing circuit, a third secondary-side diode, a fourth secondary-side diode, a first secondary-side switching element, and a second secondary-side switching element. The first secondary-side switching element and the second secondary-side switching element are connected in common to a first node at which the first current path and the second current path are connected to each other.
Abstract:
A power conversion system according to the present disclosure includes a first circuit, a second circuit, and a third circuit. A first internal terminal, a second internal terminal, and a third internal terminal are electrically connected to the same connection unit. The third circuit provides an output voltage across a secondary winding of a transformer via a switching element and the transformer. The secondary winding is electrically connected to the third internal terminal. The output voltage has a waveform including a rising range in which the output voltage changes from a first potential to a second potential, a falling range in which the output voltage changes from the second potential to the first potential, and a flat range in which the output voltage is maintained at either the first potential or the second potential.
Abstract:
A control unit controls an inverter circuit such that a positive voltage and a negative voltage are alternately applied to a primary winding. The control unit controls a cycloconverter so as to allow no power to be transmitted between the cycloconverter and the inverter circuit in a first period including an inversion period during which a voltage of the primary winding has its polarity inverted. The control unit also controls the cycloconverter so as to allow power to be transmitted either in a first direction from the cycloconverter toward the inverter circuit, or in a second direction opposite from the first direction, in a second period different from the first period.