Abstract:
There is provided a method for manufacturing a three-dimensional shaped object by alternate repetition of a powder-layer forming and a solidified-layer forming by an irradiation with a light beam in order to provide a selective laser sintering method capable of reducing a warp of the three-dimensional shaped object, the warp being due to a stress around an upper surface of the three-dimensional shaped object. Especially, in the present invention, a part of a region for the formation of the solidified layer is not irradiated with the light beam to form a non-irradiated portion, thereby providing at least one slit-groove at an upper surface of the three-dimensional shaped object, the slit-groove being for reducing a stress of the three-dimensional shaped object.
Abstract:
Apparatus for manufacturing a three-dimensional shaped object comprises a chamber, a transmission window, a blow-out port and a cover member, wherein a solidified layer is formed by irradiation of a predetermined portion of a material layer with a light beam, thereby allowing a sintering of the material in the predetermined portion or a melting and subsequent solidification of the material, the material layer being provided within the chamber. The transmission window is provided in the chamber, allowing the light beam to be transmitted therethrough. The blow-out port is located around the transmission window, and serves for blowing out an inert gas toward an interior of the chamber. The cover member, which is positioned below the blow-out port and also serves for surrounding the blow-out port, has an annular form. A gap through which the inert gas passes is provided between the cover member and the transmission window.
Abstract:
A selective laser sintering method reduces a warping deformation of a three-dimensional shaped object, the warping deformation being due to the scanning of a light beam. The manufacturing method is a method for manufacturing a three-dimensional shaped object by alternate repetition of a powder-layer forming and a solidified-layer forming, wherein a scanning of the light irradiation is divided into light beam-scannings “A” and “B”, the light beam-scanning “A” being for the light irradiation of a peripheral portion corresponding to a periphery of the three-dimensional shaped object, and the light beam-scanning “B” being for the light irradiation of an internal portion corresponding to a region of the three-dimensional shaped object, the region being located inside the periphery. In particular, the peripheral portion is subjected to a discontinuous light beam-irradiation in the light beam-scanning “A” such that an irradiation path of the light beam is divided into a plurality of sub-irradiation paths.
Abstract:
There is provided a selective laser sintering method capable of reducing the bulge of the peripheral portion corresponding to the periphery of the three-dimensional shaped object. The manufacturing method according to an embodiment of the present invention includes alternate repetition of a powder-layer forming and a solidified-layer forming, the repetition comprising: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby sintering the powder in the predetermined portion or a melting and subsequently solidifying the powder; and (ii) forming another solidified layer by newly forming a powder layer on the formed solidified layer, followed by irradiation of a predetermined portion of the newly formed powder layer with the light beam, wherein a scanning of the light irradiation is divided into light beam-scannings “A” and “B”.
Abstract:
There is provided a selective laser sintering method capable of reducing the trouble in chipping or breakage of the machining tool and the like. The manufacturing method according to an embodiment of the present invention is a method for manufacturing a three-dimensional shaped object by repetition of a powder-layer forming and a solidified-layer forming, the repetition including the steps of (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof, and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam.
Abstract:
There is provided a manufacturing method of the three-dimensional shaped object, the method being capable of reducing an undesirable phenomenon associated with the contamination of the light transmission window with the fume substance. The manufacturing method according to an embodiment of the present invention is a method for manufacturing a three-dimensional shaped object by alternate repetition of a powder-layer forming and a solidified-layer forming, wherein the irradiation with light beam for the solidified-layer forming is performed by directing the light beam into the chamber through a light transmission window of the chamber, and wherein a gas blow is supplied to the light transmission window by use of a movable gas supply device, the light transmission window having been contaminated with a fume generated upon the formation of the solidified layer.
Abstract:
There is provided a mold including a movable side mold, a fixed side mold and a sprue bush, the sprue bush including a flow path for a cooling fluid of the fixed side mold, wherein inlet and outlet ports of the flow path for the cooling fluid are in a direct connection with a cooling tube, respectively, the cooling tube being located along a space portion provided in the fixed side mold, and wherein the space portion is in a form of an opening provided in at least one of opposed surfaces of the fixed side mold.
Abstract:
In order to provide the method for manufacturing the three-dimensional shaped object which is capable of preventing the occurrence of the raised portion at the sintered portion or the melted and subsequently solidified portion by the irradiation of the light beam, there is provided a method for manufacturing a three-dimensional shaped object by alternate repetition of a step (i) forming a powder-layer and a step (ii) forming a solidified layer by irradiating a predetermined portion of the powder layer with a light beam, wherein the light beam-irradiated portion is vibrated in the step (ii).
Abstract:
To provide an injection mold capable of filling a necessary resin material for obtaining a desired molded article in a cavity space of a fine mesh structure, there is provided an injection mold according to an embodiment of the present invention composed of a core mold and a cavity mold, in which a cavity space is formed when the core and cavity molds are in a contact with each other, the cavity space surrounding a plurality of contact areas between the core and cavity molds. In the injection mold according to an embodiment of the present invention, at least one of the core and cavity molds has a through-hole which has an opening in a parting plane of the core and cavity molds and extends from the opening to an outside of the injection mold, the parting plane corresponding to the contact areas between the core and cavity molds.
Abstract:
An apparatus for producing a laminated object, includes a powder layer forming unit for forming a powder layer of a powdery material, a material supply unit for feeding the powdery material to the powder layer forming unit; and a solidified layer forming unit for forming a solidified layer by irradiating a light beam on a specified portion of the powder layer and sintering or melting the specified portion of the powder layer. The apparatus is configured to produce an integrally laminated three-dimensional object by repeating formation of the powder layer and formation of the solidified layer. The material supply unit includes a cartridge unit charged with the powdery material, the cartridge unit being configured to allow the powdery material to drop downwards.