摘要:
This disclosure describes three-dimensional printing kits, methods, and systems for three-dimensional printing with phosphorescent pigments. In one example, a three-dimensional printing kit can include a powder bed material and a low-tint fusing agent. The powder bed material can include polymer particles and phosphorescent pigment particles mixed with the polymer particles. The low-tint fusing agent can include water and an electromagnetic radiation absorber. The electromagnetic radiation absorber can absorb radiation energy and convert the absorbed radiation energy to heat.
摘要:
The objective of the present invention is to provide a powder material for a powder bed fusion method, said powder material making it possible to easily sinter or fuse metal particles included in the powder material using a low-energy laser regardless of the material constituting the powder material. The powder material is used in the production of a three-dimensional molded article by selectively irradiating a thin layer of the powder material, which includes metal particles, with a laser light, forming molded article layers formed by sintering or fusing the metal particles, and laminating the molded article layers. The powder material includes porous metal particles formed by binding metal nanoparticles with a binder, and the BET specific surface area of the powder material is 5.0×106−1.1×108 (m2/m3), inclusive.
摘要:
Provided herein are systems, apparatuses, and methods for generating a three-dimensional (3D) object using an energy beam array. Also provided herein are systems, apparatuses and methods for generating a 3D object with small-scaffold features, as well as systems, apparatuses and methods for generating a 3D object using roll-to-roll. The roll-to-roll apparatus may include a moving platform of the 3D object. The 3D object can be formed by an additive manufacturing process from a material such as powder.
摘要:
This invention presents the process of direct laser casting of copper alloys: Cu—X (where X=Ni, Fe, W;) and their composites Cu—Y and Cu—X—Y (Y=WC, TiC, Ti+C) from powders prepared using mechanical mixing and ball milling processes. Since the metallic powder is combined with a low melting point Cu metal, which has good thermal and electrical conductivity, the combination allows the powder mixture to be melted by CO2 laser and re-solidified into a part with good mechanical properties and conductivity. The laser casting process for the Cu-based in-situ formation and the material systems formed using the said method have been developed. The process can be used to fabricate complex three-dimensional objects by multi-layer overlapping and the material systems can be used to build rapid tooling due to the properties of good thermal conductivity and low wear rate.
摘要:
A method and apparatus for selectively sintering a layer of powder to produce a part comprising a plurality of sintered layers. The apparatus includes a computer controlling a laser to direct the laser energy onto the powder to produce a sintered mass. The computer either determines or is programmed with the boundaries of the desired cross-sectional regions of the part. For each cross-section, the aim of the laser beam is scanned over a layer of powder and the beam is switched on to sinter only the powder within the boundaries of the cross-section. Powder is applied and successive layers sintered until a completed part is formed. Preferably, the powder comprises a plurality of materials having different dissociation or bonding temperatures. The powder preferably comprises blended or coated materials.
摘要:
The present disclosure generally relates to methods and apparatuses for laser shock peening during additive manufacturing (AM) processes. Such methods and apparatuses can be used to embed microstructural and/or physical signatures into manufactured objects, and such embedded chemical signatures may find use in anti-counterfeiting operations and in manufacture of objects with multiple materials.
摘要:
The material properties of structures made with conductive nanoparticles are enhanced by radiation sintering followed by chemical sintering. The conductive nanoparticles may be applied to substrates by methods such as screen printing, inkjet, aerosol and electrospinning and then sintering the conductive nanoparticles on the substrates.
摘要:
In the rapid prototyping method of selective laser sintering, temperature gradients occur inside and between individual layers, leading to component deformation which is intolerable at least for high-quality components. The air of the invention is to provide a method for selective laser sintering, whereby the temperature inside the built-up particle cake is as homogeneous as possible. To this end, particles containing at least one material having a maximum softening temperature of approximately 70° C. are used.
摘要:
A succession of superposed digitized sections of an object are produced from a three-dimensional representation of the object. A powder or a mixture of powders is spread in the form of a fine layer and heated to a temperature close to solid phase sintering temperature of the powder or the mixture of powders. The layer is brought to the sintering temperature by scanning with a laser beam the layer such that a selected part of the powder, corresponding to one of the digitized sections of the object to be produced, is sintered in solid phase by the additional energy supplied by the laser. Additional layers of the powder or the mixture of powders are spread, heated and scanned with the laser beam until all the digitized superposed sections of the object to be produced are obtained.
摘要:
The present invention is a method which customizes the penetration depth of a heat-fusible powder used in solid freeform fabrication process such as laser sintering. The penetration depth of the heat-fusible powder is customized by combining opaque and transparent powders at a ratio which ensures that the beam contacts a portion of powder beneath its surface, thereby promoting complete layer sintering as well as adherence to previously sintered layers.