Abstract:
A method may verify that a fuel tank cap is present and properly closed after refueling of a motor vehicle fuel tank. The method may include, in response to a request for refueling: (a1) enabling refueling of the motor vehicle fuel tank by opening a first vent valve connected in series in a vent line, downstream from a first port of a recirculation line coupled to the vent line, so that to vent the motor vehicle fuel tank to the atmosphere through a fuel vapor canister; (b1) disabling refueling of the motor vehicle fuel tank by closing the first vent valve; (c1) monitoring the internal pressure within the motor vehicle fuel tank when the refueling request is finished; and (d1) concluding that the fuel tank cap is deemed present and properly closed when the internal pressure increases and/or remains higher than the atmospheric pressure.
Abstract:
A vehicular liquid containment system including a tank, a pressure sensor arranged to detect a pressure in a vapor dome inside the tank, at least two thermistors configured to detect temperatures at a plurality of levels of the tank, and leak detection logic operatively connected to the pressure sensor and the thermistors. The leak detection logic is configured to: use a first thermistor of the thermistors to perform a first measurement indicative of a temperature in the vapor dome in the tank; estimate an expected pressure evolution in function of at least the first temperature measurement; monitor pressure sensed by the pressure sensor, determine whether the monitored pressure deviates from the expected pressure evolution, and generate a leak condition signal conditional on the determining.
Abstract:
The invention relates to a leak detection system on board of a vehicle comprising a fuel tank (301, 401), a filler pipe (302, 402), a venting line (303, 403) for recirculating fuel vapors from the tank to the filler pipe, said system having a combination pressure and temperature sensor mounted in the vapor dome of the fuel tank, and a pressure sensor located in the recirculation line above the highest possible liquid level that could be present in the recirculation line and to methods to detect said leak.
Abstract:
A vapour recovery system recovers vapour coming from a vehicle tank. The system includes a valve that is positionable in a closed position, an open position creating a passageway with a first size, and one or more intermediate positions each creating a passageway with a size smaller than the first size. The system also includes an electronic controller to control an actuator to position the valve in a sequence of positions over time. The sequence includes at least one of the intermediate positions during a time period larger than 1 second. The valve is arranged in a line of the vapour recovery system between a vapour outlet of the vehicle tank and the atmosphere. The actuator is a stepper-motor based linear actuator. The controlling includes selecting at least one intermediate position, and the selection includes selecting a number of steps to be set from a predetermined reference position.
Abstract:
A fuel tank venting system for an automotive vehicle comprising: a fuel tank comprising a vapor dome, a refueling pipe, a fuel vapor trap that is connected to the fuel tank by an inlet conduit, wherein the inlet conduit is connected with the fuel tank through an orifice which is permanently open, the orifice being arranged in the vapor dome of the fuel tank in a static condition and a normally closed shutter device that communicates with the atmosphere and that is connected to the fuel vapor trap by an outlet conduit, the normally closed shutter device comprising an electrically-actuated valve being closed when the electrically-actuated valve is de-energized, wherein the normally closed shutter device is configured to be open during vehicle refueling process and to be closed when the fuel in the fuel tank reaches a predetermined fill level and when the vehicle is in normal operation.
Abstract:
The fuel tank (1) comprises: —a wall (12) defining an internal volume (20) of the tank, and —a temperature sensor (4) located inside the internal volume of the tank and at least partially enveloped with a material (21) having a thermal diffusivity comprised between 2×10−7 and 2×10−5 m2/s at 20° C.
Abstract:
The fuel tank (1) comprises: an electronical board, a first sensor connected to the electronical board, the first sensor being a pressure sensor, a pressure port (7) forming a hole through a wall (12) of the tank, at least one second sensor (4) extending fully inside the tank, and a connector (10) connecting the second sensor to the electronical board through the pressure port, a first part (14) of the connector being connected to the second sensor by at least one first wire (13) and a second part (9) of the connector being connected to the electronical board by at least one second wire (8).
Abstract:
Method for controlling the opening speed of a valve connected between a fuel tank and a filter, and configured to relieve the pressure inside the fuel tank into the filter, the method comprising the steps of:— Measuring a pressure in the fuel tank,— Measuring or inferring a fuel vapor temperature in the fuel tank,— Calculating an opening speed as a function of the pressure and the fuel vapor temperature in the fuel tank,— Opening the valve at the calculated opening speed in order to avoid corking of another valve of the fuel tank connected between the valve and the fuel tank. Assembly for putting the method into practice
Abstract:
A module (49, 149, 249) for use in a vehicle fuel system, said module comprising a housing (7) having a first port (9), a second port (41) and a passage (57) between the first port and the second port; a closure body (11) that is moveably arranged in said housing; wherein said closure body is configured for closing the passage between the first port and the second port in a first position of the closure body and for allowing access to the passage in a second position of the closure body; and a pump (13) that is integrated in said housing (7), wherein said pump (13) communicates with the first port (9) and is configured for pumping fluid into or out of the first port (9) while the closure body (11) is in the first position, characterized in that the module (49, 149) further comprises a motor (15) and a closure body actuator (67) configured for positioning the closure body (11, 111) in at least the first position and the second position, wherein said closure body actuator is driven by said motor (15), and said motor is configured for driving the pump (13) while the closure body is in the first position.
Abstract:
A component is made for a vehicle plastic hollow article, such as a fuel tank, wherein the article includes a wall obtained from a plastic parison. The component is configured to be welded to the wall and includes a main hollow body including an external face, a shoulder protruding from the external face, and at least one recess configured to receive air when the shoulder contacts the wall during welding of the component.