Abstract:
A method of operating a twin engine helicopter power plant, the power plant comprising: two turboshaft engines each having an engine shaft with a turbine at a distal end and a one-way clutch at a proximal end; a gear box having an input driven by the one way clutch of each engine and an output driving a helicopter rotor; a bypass clutch disposed between the proximal end of each engine shaft and the input of the gear box; and power plant management system controls for activating the bypass clutch; the method comprising: detecting when a rotary speed of an associated engine shaft is less than a rotary speed of the gear box input; activating the bypass clutch to drive the associated engine shaft using the rotation of the gear box input; and starting an associated engine by injecting fuel when the bypass clutch is activated.
Abstract:
The described reduction gearbox of a gas turbine engine includes a first gear reduction stage having an input gear adapted to be driven by a turbine output shaft. The input gear transfers power received from the turbine output shaft laterally away from the input gear to an input speed gear. Each input speed gear engages an output speed gear to define a main speed reduction gear set, and the main speed reduction gear sets are laterally spaced apart from one another to define a gap. The gearbox has a second gear reduction stage driven by the output speed gears, the second stage adapted to drive an engine output shaft.
Abstract:
A multi-engine system 10 for use on an aircraft 14 is disclosed. The system 10 may comprise a first aircraft engine 16A and a second aircraft engine 16B configured to drive at least one device 12 of the aircraft 14. A starter 20 may be coupled to one of the first and second aircraft engines 16A, 16B to assist starting of the one of the first and second aircraft engines 16A, 16B. An energy source 24 may be configured to deliver energy to the starter 20 at a rapid rate during rapid starting of the one of the first and the second aircraft engines 16A, 16B, the rapid rate being higher than a regular rate used during regular starting of the one of the first and the second aircraft engines 16A, 16B. The energy source 24 may comprise at least one supercapacitor.
Abstract:
A turboprop gas turbine engine mountable to an aircraft has an engine core and a gearbox driving a propeller, the engine core and the gearbox being enclosed within a nacelle. The propeller is located rearward of the gearbox and the engine core relative to a direction of travel of the aircraft. An air intake is disposed within the nacelle and formed to direct ambient air into the engine core. The air intake includes an air inlet duct, having a forward-facing intake inlet receiving the ambient air, with an upstream section and a downstream section. The upstream section is in fluid communication with the intake inlet and extends downstream from the intake inlet. The downstream section fluidly connects to and directs air from the upstream section into the engine air inlet. A second air outlet duct is located within the nacelle and directs air into an air-cooled-oil-cooler (ACOC).
Abstract:
A multi-spool gas turbine engine comprises a low pressure (LP) spool and a high pressure (HP) spool independently rotatable about a central axis extending through an accessory gear box (AGB). The LP spool has an LP compressor, which is axially positioned between the HP compressor of the HP spool and the AGB. A tower shaft drivingly connects the HP spool to the AGB.
Abstract:
A gas turbine engine has a first spool having a low pressure compressor section disposed forward of an air inlet along a direction of travel of the engine, and a low pressure turbine section disposed forward of the low pressure compressor section and drivingly engaged thereto. A second spool has a high pressure compressor section disposed forward of the low pressure compressor section, and a high pressure turbine section disposed forward of the high pressure compressor section and drivingly engaged thereto. The high pressure turbine section is disposed aft of the low pressure turbine section. An output drive shaft drivingly engages the low pressure turbine section and extends forwardly therefrom to drive a rotatable load. A method of operating a gas turbine engine is also discussed.
Abstract:
A method of controlling a speed of a gas turbine engine, the gas turbine engine including a high pressure spool and a low pressure spool rotating independently from one another, including determining a temperature-corrected rotational speed of the high pressure spool based on an actual rotational speed of the high pressure spool and on an air temperature measured outside of the gas turbine engine; controlling the rotation of the high pressure spool to maintain the temperature-corrected rotational speed of the high pressure spool at least substantially constant throughout a range of a power demand on the gas turbine engine; and controlling a rotational speed of the low pressure spool independently of the rotation of the high pressure spool.
Abstract:
A multi spool gas turbine engine with a differential having a selectively rotatable member which rotational speed determines a variable ratio between rotational speeds of driven and driving members of the differential. The driven member is engaged to the first spool and a rotatable shaft independent of the other spools (e.g. connected to a compressor rotor) is engaged to the driving member. First and second power transfer devices are engaged to the first spool and the selectively rotatable member, respectively. A circuit interconnects the power transfer devices and allows a power transfer therebetween, and a control unit controls the power being transferred between the power transfer devices. Power can thus be transferred between the first spool and the selectively rotatable member to change the speed ratio between the first spool and the rotatable shaft.
Abstract:
A gas turbine engine has a first spool having a low pressure compressor section in fluid communication with an air inlet, the low pressure compressor section including a first plurality of variable guide vanes therein, and a low pressure turbine section drivingly engaged to the low pressure compressor section. A second spool has a high pressure compressor section in fluid communication with the low pressure compressor section to receive pressurized air therefrom, the high pressure compressor section including a second plurality of variable guide vanes at an entry thereof, and a high pressure turbine section drivingly engaged to the high pressure compressor section, the high pressure turbine section disposed upstream of the low pressure turbine section and in fluid communication therewith. An output drive shaft drivingly engages the low pressure turbine section and is adapted to drivingly engage a rotatable load of the gas turbine engine.
Abstract:
A clutch device for a gas turbine engine having a sliding coupling mounted to the engine and slidingly displaceable therein. The sliding coupling is mountable between the gearbox and the output shaft. The sliding coupling is continuously engageable with the gearbox and is selectively engageable with the output shaft to mechanically couple the output shaft to the gearbox. The sliding coupling is slidingly displaceable between a first position in which the sliding coupling is mechanically coupled to the output shaft to transmit a rotational drive of the output shaft to the gearbox, and a second position in which the sliding coupling is disengaged from the output shaft. A piston is disposed within the engine and acts on the sliding coupling to displace the sliding coupling to at least the second position.