Abstract:
The present invention provides a porous coordination polymer having high ability of storing a gas. The porous coordination polymer according to the present invention comprises zinc cluster ions and one kind of tricarboxylic acid ions selected from the group consisting of the following chemical formula (I), the following chemical formula (II), and the following chemical formula (III); where X represents a natural number of not less than 1 and not more than 3, wherein the tricarboxylic acid ions are bound to the zinc cluster ions as terdentate ligands.
Abstract:
An optical device includes a first substrate, a second substrate, a plurality of separation walls, one or more optical waveguides, and one or more spacers. The first substrate has a surface which extends in a first direction and a second direction intersecting the first direction. The second substrate faces the first substrate. The plurality of separation walls are positioned between the first substrate and the second substrate and extend in the first direction. The one or more optical waveguides are positioned between the first substrate and the second substrate and include one or more dielectric members which are positioned between the plurality of separation walls and which extend in the first direction. The one or more spacers are directly or indirectly sandwiched between the first substrate and the second substrate and positioned around the one or more optical waveguides.
Abstract:
The present invention provides a porous coordination polymer, wherein the porous coordination polymer is formed of unit lattices; each of the unit lattices has a shape of a cube having eight vertexes and twelve sides; each of the vertexes of the unit lattices consists of a Zn4O cluster; each of the sides of the unit lattices consists of a −OOC—C≡C—COO− group. At least a part of the unit lattices contains at least one hydrogen molecule only, or the inside of at least a part of the unit lattices is empty. The present invention provides a novel porous coordination polymer, especially, a porous coordination polymer suitable for separating hydrogen molecules from a gaseous mixture of the hydrogen molecules and impurity molecules (e.g., nitrogen molecules, oxygen molecules, or carbon dioxide molecules).
Abstract:
The present invention provides a photoelectrode capable of effectively utilizing energy of light for an intended reaction such as a water decomposition reaction. The present invention provides a photoelectrode 100 includes a first conductor 101 as a substrate; a second conductor 102 which is disposed on first conductor 101, has a porous structure including a three-dimensionally continuous skeleton 102a and pores 102b formed by the skeleton 102a, and is transparent; and a visible-light photocatalyst 103 disposed in the pores of the second conductor 102.
Abstract:
An optical device includes a first structure, a second structure, one or more optical waveguide regions, and a seal member. The first structure has a first surface. The second structure has a second surface facing the first surface. The one or more optical waveguide regions are located between the first surface of the first structure and the second surface of the second structure and contain a liquid crystal material. The seal member fixes a spacing between the first structure and the second structure, surrounds the one or more optical waveguide regions, and includes an opening through which the liquid crystal material is injected. A width of the opening in a first direction is greater than a width of the one or more optical waveguide regions in the first direction.
Abstract:
An optical device includes a first substrate with a first surface spreading in a first direction and a second direction intersecting the first direction, a second substrate with a second surface facing the first surface, a film bonded to the first surface and/or the second surface through a siloxane bond, and at least one optical guide layer positioned between the first substrate and the second substrate, the optical guide layer including a dielectric member in contact with the film and guiding light in the first direction and/or the second direction.
Abstract:
An optical device includes: a first mirror having translucency and including a first reflecting surface extending along a first direction and a second direction intersecting the first direction; a second mirror including a second reflecting surface facing the first reflecting surface; an optical waveguide layer located between the first mirror and the second mirror, the optical waveguide layer including a plurality of non-waveguide areas laid side-by-side along the second direction and one or more optical waveguide areas located between the plurality of non-waveguide areas, the optical waveguide areas containing a liquid crystal material, having a higher average refractive index than do the plurality of non-waveguide areas, and propagating light along the first direction; and two electrode layers facing each other across the optical waveguide layer, at least one of the two electrode layers including a plurality of electrodes laid side-by-side along the second direction.
Abstract:
Provided is a semiconductor photoelectrode comprising a first conductive layer; a first n-type semiconductor layer disposed on the first conductive layer; and a second conductive layer covering the first n-type semiconductor layer. The first n-type semiconductor layer has a first n-type surface region and a second n-type surface region. The first n-type surface region is in contact with the first conductive layer. The second n-type surface region is in contact with the second conductive layer. The first n-type semiconductor layer is formed of at least one selected from the group consisting of a nitride semiconductor and an oxynitride semiconductor. The second conductive layer is light-transmissive. The second conductive layer is formed of a p-type oxide conductor.
Abstract:
An optical device includes a first structure body with a first surface, a second structure body with a second surface facing the first surface, one or more optical guide regions positioned between the first surface of the first structure body and the second surface of the second structure body, the one or more optical guide regions including a liquid crystal material, and a first alignment film disposed on the first surface and aligning the liquid crystal material, the first alignment film being a rubbing alignment film, wherein the optical device further includes a second alignment film that is an optical alignment film formed by irradiation with polarized light.
Abstract:
An optical device includes a first substrate having a first surface, a second substrate having a second surface, at least one optical waveguide, and a plurality of spacers, disposed on at least either the first surface or the second surface, that include a first portion and a second portion. The first portion of the plurality of elastic spacers is at least one elastic spacer located in a region between the first substrate and the second substrate in which the first substrate and the second substrate overlap each other as seen from an angle parallel with a direction perpendicular to the first surface. The second portion of the plurality of elastic spacers is at least one elastic spacer located in a region in which the first substrate and the second substrate do not overlap each other as seen from an angle parallel with the direction perpendicular to the first surface.