摘要:
A heat shielding material and method for manufacturing thereof is provided. The method for manufacturing the heat shielding material, includes: providing a tungsten oxide precursor solution containing a group VIII B metal element; drying the tungsten oxide precursor solution to form a dried tungsten oxide precursor; and subjecting the dried tungsten oxide precursor to a reducing gas at a temperature of 100° C. to 500° C. to form a composite tungsten oxide. The heat shielding material includes composite tungsten oxide doped with a group I A or II A metal and halogen, represented by MxWOy or MxWOyAz, wherein M refers to at least one of a group I A or II A metal, W refers to tungsten, O refers to oxygen, and A refers to a halogen element. The heat shielding material also includes a group VIII B metal element.
摘要:
A transparent heat shielding multilayer structure is disclosed. The multilayer structure includes: a transparent base film; a first transparent heat shielding layer with lanthanum hexaboride (LaB6) nanoparticles dispersed therein; and a second heat shielding layer with ATO (antimony doped tin oxide), ITO (indium tin oxide), or metal doped tungsten oxide nanoparticles dispersed therein. The first and second transparent heat shielding layers may be disposed on the same side or opposite sides of the transparent base film.
摘要:
A transparent heat shielding multilayer structure is disclosed. The multilayer structure includes: a transparent base film; a first transparent heat shielding layer with lanthanum hexaboride (LaB6) nanoparticles dispersed therein; and a second heat shielding layer with ATO (antimony doped tin oxide), ITO (indium tin oxide), or metal doped tungsten oxide nanoparticles dispersed therein. The first and second transparent heat shielding layers may be disposed on the same side or opposite sides of the transparent base film.
摘要:
A transparent heat shielding material, a fabrication method thereof and a transparent heat shielding structure are provided. The transparent heat shielding material is represented by MxWO3-yAy, wherein M is at least one element of alkali metal, W is tungsten, O is oxygen, A is halogen, 0
摘要:
A transparent heat shielding material, a fabrication method thereof and a transparent heat shielding structure are provided. The transparent heat shielding material is represented by MxWO3-yAy, wherein M is at least one element of alkali metal, W is tungsten, O is oxygen, A is halogen, 0
摘要:
A fire-resistant polyurethane foam is provided. A hydroxyl-containing inorganic fire retardant is premixed with a polyisocyanate and a polyol, respectively, to form two premixtures. Then, the two premixtures are mixed for reaction to form a fire-resistant polyurethane foam. Preferably, a combination of different particle sizes of the fire retardant is employed to maximize the amount of the fire retardant and increase the fire resistance of the foam.
摘要:
A fire-resistant polyurethane foam is provided. A hydroxyl-containing inorganic fire retardant is premixed with a polyisocyanate and a polyol, respectively, to form two premixtures. Then, the two premixtures are mixed for reaction to form a fire-resistant polyurethane foam. Preferably, a combination of different particle sizes of the fire retardant is employed to maximize the amount of the fire retardant and increase the fire resistance of the foam.
摘要:
A multilayer fire-resistant material is provided, which comprises two or more layers formed of homogeneous or heterogeneous materials, with at least one layer being an organic/inorganic composite. The organic/inorganic composite comprises an organic component of a polymer, oligomer, or copolymer having a first reactive functional group, and inorganic particles having a second reactive functional group. The inorganic particles are chemically bonded to the organic component via a reaction between the first and the second reactive functional groups.
摘要:
A multilayer fire-resistant material is provided, which comprises two or more layers formed of homogeneous or heterogeneous materials, with at least one layer being an organic/inorganic composite. The organic/inorganic composite comprises an organic component of a polymer, oligomer, or copolymer having a first reactive functional group, and inorganic particles having a second reactive functional group. The inorganic particles are chemically bonded to the organic component via a reaction between the first and the second reactive functional groups.
摘要:
A polyolefin-based nanocomposite and a method of preparing the same are disclosed. The polyolefin-based nanocomposite is prepared by melt kneading a mixture including (A) 40-99.8% by weight of a matrix polymer of polyolefin; (B) 0.1-30% by weight of a polyolefin compatilizer containing polar reactive groups; and (C) 0.1-30% by weight of a layered clay material having a quaternary ammonium ion bonded to the surface thereof. The quaternary ammonium ion contains (I) at least one alkyl group having at least 15 carbon atoms; and (ii) a substitutent having —Si—O—Si—linkage and at least one terminal reactive group.