Abstract:
In order to adjust the maximum size of the information sequences transmitted by a plurality of terminals in a network, according to a predetermined network protocol, between two subnetworks supporting different maximum sizes of information sequence: there is stored in an information base, for each of the terminals, an identifier for this terminal and the maximum size of the information sequences allowed by the network protocol for communicating with this terminal; the information base is updated from the analysis of any information sequence conveyed in one of the subnetworks; then, for each information sequence to be transmitted: the identifier of the destination terminal and the corresponding maximum size of the information sequences are read in the information base; the maximum size read is compared with the current maximum size allowed by the network protocol; and, if the maximum size read is less than the current maximum size, the current maximum size is adjusted by allocating to it the value of the maximum size read.
Abstract:
The present invention relates to a method of synchronisation between communication networks exchanging information by frame of informations, each communication network having clock and the number of clock pulses is monitored by a counter. The synchronisation is made by reading information representing the counted clock pulses of the clock of the first network at the appearance of a reference event, inserting at least said information or calculated information on the basis of said information into the frame of information as the synchronisation information, transferring said frame of information from the first to the second network, reading information representing the number of counted clock pulse of the clock of the second network at the appearance of reference event, reading synchronisation information inserted in received frame of information from the first network, calculating a difference between information and synchronising the second network.
Abstract:
The present invention concerns a method and an apparatus of generating a reference event in a receiving node receiving frames of information, when a frame of information is received, the method and the apparatus sample the frame of information in order to form sampled data, process sampled data in order to detect among said sampled data a specific data, monitor the number of processed sampled data until the detection of a specific data and generate a reference event according to the result of processing and monitoring.
Abstract:
A method of transmitting binary data by a sender to a receiver over a transmission channel includes a formatting function integrated with a function of external coding of the binary data. The method applies in particular to the case where the sender uses a turbocoder with an interleaver of the “x to xe” type, and where the receiver uses a turbodecoder with an interleaver of the “x to xe” type.
Abstract:
The present invention relates to a method of synchronization between communication networks exchanging information by frame of informations, each communication network having clock and the number of clock pulses is monitored by a counter the synchronization is made by reading information representing the counted clock pulses of the clock of the first network at the appearance of a reference event, inserting at least said information or calculated information on the basis of said information into the frame of information as the synchronization information, transferring said frame of information from the first to the second network, reading information representing the number of counted clock pulse of the clock of the second network at the appearance of reference event, reading synchronization information inserted in received frame of information from the first network, calculating a difference between information and synchronizing the second network.
Abstract:
The present invention relates to a method of synchronization between communication networks exchanging information by frame of informations, each communication network having clock and the number of clock pulses is monitored by a counter the synchronization is made by reading information representing the counted clock pulses of the clock of the first network at the appearance of a reference event, inserting at least said information or calculated information on the basis of said information into the frame of information as the synchronization information, transferring said frame of information from the first to the second network, reading information representing the number of counted clock pulse of the clock of the second network at the appearance of reference event, reading synchronization information inserted in received frame of information from the first network, calculating a difference between information and synchronizing the second network.
Abstract:
An information packet transmission device for a communication system has a transmission part and a reception part, at least one of the transmission or reception parts having a turbocoder, and an external interleaver upstream of the turbocoder. The turbocoder preferentially has an interleaver, and a deinterleaver of the “x to xe” type. The external interleavers are of the row column or column row type.
Abstract:
An optical apparatus for ranging and communication in free space comprises a rangefinder comprising a device for transmitting an optical signal to a target and a device for receiving the signals backscattered by the target. A system for optical communication in free space comprises a device for transmitting an optical signal to a remote optical receiving device. The transmitting device of the rangefinder and transmitting device of the communication system is a transmitting device common to the rangefinder and communication system and transmitting pulses of peak power greater than 50 W and shape factor less than 0.01 or a modulated continuous signal of peak power less than 10 W and shape factor equal to approximately 0.5 and the apparatus comprises a supervisor controlling the common transmitting device according to two modes, the pulse mode to perform the ranging function, or the modulated continuous mode to perform the optical communication function.
Abstract:
An optical pumping structure for lasers includes: an active medium in the form of a cylindrical rod with a circular cross-section, said rod being inserted at its ends into two rings made of a thermally conductive material; at least three stacks of pumping diode strips arranged in the form of a star around the rod; and a support temperature-regulated by a Peltier-effect module. The rings are in contact with the support, and a stack of diodes, called bottom stack, being situated between the rod and the support, and the structure comprises, for each other stack, a thermal conduction block forming a support for said stack, these blocks being mounted on the cooled support and not being in contact with one another or with the rings.
Abstract:
In a tunnel incoming end-point, for each data packet, the data packet coming from a source device belonging to a same sub-network as the tunnel incoming end-point is received. An effective channel from among the transmission channels is selected, as a function of a protocol associated with the payload data contained in the received packet, and of a piece of information on quality of transport linked to current conditions of transmission on the transmission channels, the piece of information depending on the protocol associated with the payload data contained in the received packet. The received packet is then encapsulated, according to a transport protocol associated with the effective channel, used to obtain a packet to be sent, and the packet to be sent in the tunnel are transmitted on the effective channel selected.