Abstract:
A paper structure having at least three regions is disclosed. The paper structure has a first region, a patterned second region, and a third transition region connecting the first and second regions. The first and second regions are disposed at different elevations, and can each have a thickness less than a thickness of the transition region. An apparatus and process for making such a paper structure are also disclosed.
Abstract:
A cellulosic fibrous structure having two regions distinguished from one another by basis weight. The first region is an essentially continuous high basis weight network. The second region comprises a plurality of discrete low basis weight regions. The cellulosic fibers forming the plurality of second regions are generally radially oriented within each region. The cellulosic fibrous structure may be formed by a forming belt having zones of different flow resistances arranged in a particular ratio of flow resistances. The zones of different flow resistances provide for selectively draining a liquid carrier through the different zones of the belt in a radial flow pattern.
Abstract:
A backside textured papermaking belt is disclosed which is comprised of a framework and a reinforcing structure. The framework has a first surface which defines the paper-contacting side of the belt, a second surface opposite the first surface, and conduits which extend between first and second surfaces of the belt. The first surface of the framework has a paper side network formed therein which defines the conduits. The second surface of the framework has a backside network with passageways that provide surface texture irregularities in the backside network. The papermaking belt is made by applying a coating of photosensitive resinous material to a reinforcing structure which has opaque portions, and then exposing the photosensitive resinous material to light of an activating wavelength through a mask which has transparent and opaque regions and also through the reinforcing structure. A process for making paper products is also disclosed which involves applying a fluid pressure differential from a vacuum source through the belt to a partially-formed embryonic web of papermaking fibers. The fibers in the embryonic web are deflected into the conduits of the papermaking belt by the vacuum pressure while the papermaking belt and the embryonic web travel over the vacuum source. Following the deflection, the paper web is impressed with the paper side network of the belt, and dried to form the final product.
Abstract:
A papermaking belt, comprising either a forming wire or a through-air-drying belt. The papermaking belt comprises a reinforcing structure having two layers tied together and a resinous framework. The yarns of the first layer are interwoven so that, except for the tie yarns, each yarn remains within 1.5 yarn diameters of the top plane defined by the knuckles of the first layer. The belt has a thickness of at least 2.5 times the yarn diameter for rigidity.
Abstract:
An improved superabsorbent polymer foam having a morphology to provide improved absorptive properties is disclosed. The foam preferably comprises a superabsorbent polymer formed from a substantially water-soluble, unsaturated monomer having neutralized carboxyl groups and a substantially water-soluble internal crosslinking agent. The monomer and crosslinking agent are expanded in the presence of a substantially water-insoluble blowing agent and a suitable solvent and reacted to form a superabsorbent polymer foam having substantially continuous, intercommunicating channels substantially throughout the foam and a relatively high surface area to mass ratio.Methods for making the foam and absorbent products, members and articles containing the foam are also disclosed.
Abstract:
A process for making a cellulosic fibrous structure such as paper. In one embodiment, the fibrous structure has high and low basis weight regions. The high basis weight region is subdivided into low density regions, so that a fibrous structure having three regions is produced. In a second embodiment, the fibrous structure has four regions. Both the high and low basis weight regions are further subdivided into high and low density regions. The process comprises applying noncoincident differential pressure to selected regions of an embryonic fibrous structure.
Abstract:
Disclosed is a process for making soft tissue paper which includes the steps of wet-laying cellulosic fibers to form a web; drying the web and elevating the web temperature, creping the hot web, and applying low levels of a polysiloxane material to the hot, creped web. Preferably, the hot web is dried to a moisture level below its equilibrium moisture content before application of the polysiloxane material. The process may further include the steps of applying an effective amount of a surfactant material to enhance softness and/or wetability control; and/or an effective amount of a binder material such as starch, for linting control, and/or to contribute tensile strength to the tissue paper.
Abstract:
A process for improving the life of papermaking belts containing a cured photosensitive polymeric resin is disclosed. The process includes the continuous application of an effective amount of chemical compounds capable of slowing down the degradation rate of the photosensitive polymeric resin to the belt's surface during the papermaking operation. Preferably, the chemical compounds are antioxidants which inhibit or retard oxidation of the cured resin and its ensuing degradative effects.
Abstract:
A woven papermaking belt having a paper contacting top surface plane and an opposed backside. The belt comprises a fabric having yarns disposed, in part, in the top surface plane to form knuckles. The belt further comprises reinforcing piles extending from a proximal end to a distal end. The distal ends of the reinforcing piles are disposed between the top surface plane of the papermaking belt and the backside of the papermaking belt. The reinforcing piles resist applied loads and may prevent deflection of the knuckles during the papermaking process. The applied loads may either be normal to the belt, as occurs during imprinting, within the plane of the belt, which causes sleaziness of the belt, or both. The belt according to the present invention may have piles with proximal ends disposed at two or more different elevations, as well as distal ends, which are disposed at two or more elevations. This arrangement provides a belt which imprint different densities onto paper during papermaking, according to the ability of the piles to resist compressive loads applied normal to the plane of the belt. In one alternative embodiment, the piles may be disposed between the first and second layers of a multi-layer papermaking belt. The belt according to the present invention is particularly suitable for woven papermaking fabrics having long, unsupported knuckles.
Abstract:
The present invention provides a wet pressed paper web. The web has a first relatively high density region having a first thickness K, a second relatively low density region having a second thickness P, which is a local maxima, and a third region extending intermediate the first and second regions. The third region includes a transition region having a third thickness T, which is a local minima. The present invention also provides a method of making a wet pressed web. An embryonic web of papermaking fibers is formed on a foraminous forming member, and transferred to an imprinting member to deflect a portion of the papermaking fibers in the embryonic web into deflection conduits in the imprinting member. The web and the imprinting member are then pressed between first and second dewatering felts in a compression nip to further deflect the papermaking fibers into the deflection conduits in the imprinting member and to remove water from both sides of the web. The imprinting member can have a continuous, monoplanar web contacting surface for molding a wet paper web to have a continuous, relatively high density network and a plurality of relatively low density, discrete domes dispersed through the relatively high density network.