摘要:
A soil sampling implement and method have a sampler assembly supported from an implement frame for movement across a field. The sampler assembly includes a tapered cylindrical cutting shoe and a soil collection trough. The cutting shoe has a leading cutting edge arranged for movement through soil in a horizontal direction to cut a cylindrical core sample. A sensing device is provided for measuring at least one soil property. The sampler assembly is moved between a lowered position in which the cutting shoe is positioned at a selected sampling depth, and a raised position in which the cutting shoe is positioned above the soil surface and a soil sample contained in the soil collection trough is brought into contact with the sensing device. A cutting shoe scraper engages and cleans the leading cutting edge of the cutting shoe when the sampler assembly is moved between the lowered and raised positions.
摘要:
A soil sampling implement and method have a sampler assembly supported from an implement frame for movement across a field. The sampler assembly includes a tapered cylindrical cutting shoe and a soil collection trough. The cutting shoe has a leading cutting edge arranged for movement through soil in a horizontal direction to cut a cylindrical core sample. A sensing device is provided for measuring at least one soil property. The sampler assembly is moved between a lowered position in which the cutting shoe is positioned at a selected sampling depth, and a raised position in which the cutting shoe is positioned above the soil surface and a soil sample contained in the soil collection trough is brought into contact with the sensing device. A cutting shoe scraper engages and cleans the leading cutting edge of the cutting shoe when the sampler assembly is moved between the lowered and raised positions.
摘要:
A multi-sensor system rapidly measures diffuse reflectance of soil, soil conductivity, and other soil properties in situ, in three dimensions. The system includes a tractor-drawn implement containing a sensor shank used for X-Y axis measurements, a hydraulic probe implement containing a sensor probe for −Z axis measurements, and a set of visible and near-infrared spectrometers, controls, and firmware that are shared by each implement. Both implements include optical sensors and soil electrical conductivity sensors. The probe implement incorporates a sensor that measures insertion force, and the shank implement includes a soil temperature sensor. These combinations of sensors are used to calibrate the system and to characterize the soil properties within a field or area. Geo-referenced soil measurements are collected with the shank implement to identify optimal locations for conducting sensor probe insertions. The probe implement is then used for sensor probing and for collecting soil core samples for lab analysis.
摘要:
A multi-sensor system rapidly measures diffuse reflectance of soil, soil conductivity, and other soil properties in situ, in three dimensions. The system includes a tractor-drawn implement containing a sensor shank used for X-Y axis measurements, a hydraulic probe implement containing a sensor probe for −Z axis measurements, and a set of visible and near-infrared spectrometers, controls, and firmware that are shared by each implement. Both implements include optical sensors and soil electrical conductivity sensors. The probe implement incorporates a sensor that measures insertion force, and the shank implement includes a soil temperature sensor. These combinations of sensors are used to calibrate the system and to characterize the soil properties within a field or area. Geo-referenced soil measurements are collected with the shank implement to identify optimal locations for conducting sensor probe insertions. The probe implement is then used for sensor probing and for collecting soil core samples for lab analysis.
摘要:
A mobile soil mapping system includes an implement for traversing a field to be mapped, and a reflectance module carried by the implement for collecting spectroscopic measurements of soil in the field. The reflectance module has a light source, an optical receiver for transmitting light to a spectrometer, and a shutter system that alters the optical path between the light source and the optical receiver. The shutter system allows the system to automatically collect a dark reference measurement and a known reference material measurement at timed intervals to compensate for drift of the spectrometer and the light source. A self-cleaning window on the reflectance module has a lower surface maintained in firm contact with the soil during operation. External reference blocks are used to calibrate the system to ensure standardized, repeatable data. Additional sensors are carried by the implement to collect other soil data, such as electrical conductivity and temperature.
摘要:
A mobile soil mapping system includes an implement for traversing a field to be mapped, and a reflectance module carried by the implement for collecting spectroscopic measurements of soil in the field. The reflectance module has a light source, an optical receiver for transmitting light to a spectrometer, and a shutter system that alters the optical path between the light source and the optical receiver. The shutter system allows the system to automatically collect a dark reference measurement and a known reference material measurement at timed intervals to compensate for drift of the spectrometer and the light source. A self-cleaning window on the reflectance module has a lower surface maintained in firm contact with the soil during operation. External reference blocks are used to calibrate the system to ensure standardized, repeatable data. Additional sensors are carried by the implement to collect other soil data, such as electrical conductivity and temperature.
摘要:
A soil mapping system for collecting and mapping soil reflectance data in a field includes an implement having a furrow opener for creating a furrow and an optical module. The optical module is arranged to collect soil reflectance data at a predetermined depth within the furrow as the implement traverses a field. The optical module includes two monochromatic light sources, a window arranged to press against the soil, and a photodiode for receiving light reflected back from the soil through the window. The two light sources have different wavelengths and are modulated at different frequencies. The photodiode provides a modulated voltage output signal that contains reflectance data from both of the light sources. Additional measurement devices are carried by the implement for collecting additional soil property data, such as electrical conductivity, pH, and elevation, which can be used together with the optical data to determine variations in soil organic matter.