摘要:
A method of making a three-dimensional porous device entails providing a substrate having a conductive pattern on a surface thereof, and depositing a colloidal solution comprising a plurality of microparticles onto the surface, where the microparticles assemble into a lattice structure. Interstices of the lattice structure are infiltrated with a conductive material, which propagates through the interstices in a direction away from the substrate to reach a predetermined thickness. The conductive material spans an area of the surface overlaid by the conductive pattern. The microparticles are removed to form voids in the conductive material, thereby forming a conductive porous structure having the predetermined thickness and a lateral size and shape defined by the conductive pattern.
摘要:
A method of making a three-dimensional porous device entails providing a substrate having a conductive pattern on a surface thereof, and depositing a colloidal solution comprising a plurality of microparticles onto the surface, where the microparticles assemble into a lattice structure. Interstices of the lattice structure are infiltrated with a conductive material, which propagates through the interstices in a direction away from the substrate to reach a predetermined thickness. The conductive material spans an area of the surface overlaid by the conductive pattern. The microparticles are removed to form voids in the conductive material, thereby forming a conductive porous structure having the predetermined thickness and a lateral size and shape defined by the conductive pattern.
摘要:
A porous battery electrode for a rechargeable battery includes a monolithic porous structure having a porosity in the range of from about 74% to about 99% and comprising a conductive material. An active material layer is deposited on the monolithic porous structure. The pores of the monolithic porous structure have a size in the range of from about 0.2 micron to about 10 microns. A method of making the porous battery electrode is also described.
摘要:
A porous battery electrode for a rechargeable battery includes a monolithic porous structure having a porosity in the range of from about 74% to about 99% and comprising a conductive material. An active material layer is deposited on the monolithic porous structure. The pores of the monolithic porous structure have a size in the range of from about 0.2 micron to about 10 microns. A method of making the porous battery electrode is also described.
摘要:
A method of enhancing the connectivity of a colloidal template includes providing a lattice of microparticles, where the microparticles are in contact with adjacent microparticles at contact regions therebetween, and exposing the lattice to a solution comprising a solvent and a precursor material. The solvent is removed from the solution, and the precursor material moves to the contact regions. A ring is formed from the precursor material around each of the contact regions, thereby creating interconnects between adjacent microparticles and enhancing the connectivity of the lattice.
摘要:
A method of enhancing the connectivity of a colloidal template includes providing a lattice of microparticles, where the microparticles are in contact with adjacent microparticles at contact regions therebetween, and exposing the lattice to a solution comprising a solvent and a precursor material. The solvent is removed from the solution, and the precursor material moves to the contact regions. A ring is formed from the precursor material around each of the contact regions, thereby creating interconnects between adjacent microparticles and enhancing the connectivity of the lattice.
摘要:
Embodiments provide a method that causes a plurality of virtual machine instructions to be interpreted for indications of a mobile device's hardware identification information, thus forming a plurality of hardware instruction interpretations. The embodiment also combines each of the plurality of hardware instruction interpretations and hashes the combination to form a quasi-hardware device identifier. An encryption process is based on the quasi-hardware encryption device identifier and the media is then encrypted using the encryption process. The encrypted media is transferred to the mobile device wherein the mobile device decrypts the media based at least in part on the mobile device's internal knowledge of the quasi-hardware device identification.
摘要:
The present invention provides methods and systems for enabling content streaming on mobile devices. The methods and systems may include encoding a content stream; providing the encoded content stream to a splitter embodied in computer executable code, which splits the encoded content stream into at least two channels, with each channel having data of a characteristic chunk size; downloading at least one data chunk into a playback queue, wherein a download algorithm determines the at least one chunk to be downloaded; and providing the at least one downloaded chunk to a media player.
摘要:
Embodiments provide a method that causes a plurality of virtual machine instructions to be interpreted for indications of a mobile device's hardware identification information, thus forming a plurality of hardware instruction interpretations. The embodiment also combines each of the plurality of hardware instruction interpretations and hashes the combination to form a quasi-hardware device identifier. An encryption process is based on the quasi-hardware encryption device identifier and the media is then encrypted using the encryption process. The encrypted media is transferred to the mobile device wherein the mobile device decrypts the media based at least in part on the mobile device's internal knowledge of the quasi-hardware device identification.