摘要:
In a ferroelectric data processing device for processing and/or storage of data with passive or electrical addressing a data-carrying medium is used in the form of a thin film (1) of ferroelectric material which by an applied electric field is polarized to determined polarization states or switched between these and is provided as a continuous layer in or adjacent toelectrode structures in the form of a matrix. A logic element (4) is formed at the intersection between an x electrode (2) and a y electrode (3) of the electrode matrix. The logic element (4) is addressed by applying to the electrodes (2, 3) a voltage greater than the coercivity field of the ferroelectric material. Dependent on the polarization state and the form of the hysteresis loop of the ferroelectric material a distinct detection of the polarization state in the logic element (4) is obtained and it may also be possible to switch between the polarization states of the logic element, which hence may be used for implementing a bistable switch or a memory cell. The data processing device according to the invention may be stacked layerwise if the separate layers are separated by an electrical isolating layer and hence be used for implementing volumetric data processing devices.
摘要:
An electrically addressable passive device for registration, storage and/or processing of data comprises a functional medium (1) in the form of a continuous or patterned structure (S) which may undergo a physical or chemical change of state. The functional medium (1) comprises individually addressable cells (2) which represent a registered or detected value or are assigned a predetermined logical value for the cell. The cell (2) is provided between the anode (3) and cathode (4) in an electrode means (E) which contacts the function medium in the cell and causes an electrical coupling therethrough, the functional medium having a non-linear impedance characteristic, whereby the cell (2) directly can be supplied with energy which effects a change in the state of the cell. In a method for electrical addressing of the passive device wherein the addressing comprises operations for i.a. detection and registration as well as further operations for writing, reading and switching of a logical value assigned to the cell, electric energy is applied directly to the functional medium of the cell in order to change its state and hence effect an addressing operation. Use in optical detector means, volumetric data storage devices or data processing devices.
摘要:
In a ferroelectric data processing device for processing and/or storage of data with passive or electrical addressing a data-carrying medium is used in the form of a thin film (1) of ferroelectric material which by an applied electric field is polarized to determined polarization states or switched between these and is provided as a continuous layer in or adjacent toelectrode structures in the form of a matrix. A logic element (4) is formed at the intersection between an x electrode (2) and a y electrode (3) of the electrode matrix. The logic element (4) is addressed by applying to the electrodes (2, 3) a voltage greater than the coercivity field of the ferroelectric material. Dependent on the polarization state and the form of the hysteresis loop of the ferroelectric material a distinct detection of the polarization state in the logic element (4) is obtained and it may also be possible to switch between the polarization states of the logic element, which hence may be used for implementing a bistable switch or a memory cell. The data processing device according to the invention may be stacked layerwise if the separate layers are separated by an electrical isolating layer and hence be used for implementing volumetric data processing devices.
摘要:
In a multistable optical logic element with a light-sensitive organic material (1) which undergoes a photocycle with several physical states by irradiation with light, and wherein a physical state is assigned a logical value which can be changed by addressing the element optically, the element initially before the addressing is in a metastable state generated in advance. A multistable optical logic element has been made proximity-addressable by providing at least a color light source (2) for optical addressing and at least one color-sensitive optical detector (5) adjacent to the light-sensitive material. In a method for preparing of the light-sensitive material (1) a desired initial metastable state is generated in the photocycle and assigned a determined logical value for the element. In a method for optical addressing of the optical logic element steps for respectively writing and storing, reading, erasing and switching comprises generating transitions between states in the photocycle and detection of the states. Use in an optical logical device for storing and processing of data.
摘要:
A device for providing addressability in an apparatus including one or more volume elements which together with the device form part of a matrix in the apparatus. The device establishes an electrical connection to specific cells by electrodes in the matrix and thereby defining a cell in the volume element. The device includes at least three sets of plural strip-like electrodes, the strip-like electrodes of each set being provided in substantially parallel relationship to each other in a two-dimensional and planar layer forming an additional part of the matrix. A set of strip-like electrodes in one layer is oriented at an angle to the projected angle of orientation of the electrode sets in proximal neighboring layers onto this one layer, such that the sets of strip-like electrodes in proximal neighboring layers exhibit a mutual non-orthogonal relationship.
摘要:
In a method for reducing detrimental phenomena related to disturb voltages in a data storage apparatus employing passive matrix addressing, particularly a memory device or a sensor device, an application of electric potentials conforming to an addressing operation is generally controlled in a time-coordinated manner according to a voltage pulse protocol. In an addressing operation a data storage cell is set to a first polarization state by means of a first active voltage pulse and then, dependent on the voltage pulse protocol, a second voltage pulse which may be a second active voltage pulse of opposite polarity to that of the first voltage pulse, is applied and used for switching the data storage cell to a second polarization state. The addressed cell is thus set to a predetermined polarization state as specified by the addressing operation. The data storage cells of the apparatus are provided in two or more electrically separated segments such that each segment comprises a separate physical address space for the apparatus. In an addressing operation the data are directed to a segment that is selected based on information on prior and/or scheduled applications of active voltage pulses to the segments.
摘要:
A ferroelectric or electret volumetric memory device with a memory material provided in sandwich between first and second electrode layers with stripe-like electrodes forming word lines and bit lines of a matrix-addressable memory array, memory cells are defined in volumes of memeory material in between two crossing word lines and bit lines and a plurality of memory arrays are provided in a stacked arrangement. A stack of memory arrays is formed by tow or more ribbon-like structures, which are folded and/or braided into each other. Each ribbon-like structure includes a flexible substrate of non-conducting material and the electrode layers respectively provided on each surface of the substrate and including the parallel strip-like electrodes extending along the ribbon-like structure. A layer of memory material covers one of the electrode layers whereby each memory array of the stack is formed by overlapping portions of a pair of adjacent ribbon-like structures and crossing in substantially orthogonal relationship.
摘要:
In an optical data storage medium with a storage area formed from a transparent, homogenous base material and with a number of optically active structures at one side of the storage area, the optically active structures are diffractive optical elements which can focus a beam of light incident on the storage area on to one or more points in the storage area and/or a redirected beam of light or emitted light radiation from this or these points on to a point outside the optical storage medium. During writing/reading of data in the storage medium, the diffractive optical elements are used for focusing the write/read beam in order to generate a data carrying structure or read data stored in such a data carrying structure, respectively. By exploiting the special optical properties of diffractive optical elements, it is possible to achieve parallel writing/reading of data, possibly in several parallel storage layers in the optical storage medium or randomly distributed therein, the optical storage medium thus providing a genuine volumetric storage and a corresponding genuine volumetric accessing of the stored data.
摘要:
In a method for obviating the effect of disturb voltages in a data storage apparatus employing passive matrix addressing, an application of electric potentials for an addressing operation is according to a voltage pulse protocol. The data storage cells of the apparatus are provided in two or more electrically separated segments each constituting non-overlapping physical address subspaces of the data storage apparatus physical address space. A number of data storage cells in each segment are preset to the same polarization by an active voltage pulse with a specific polarization. In a first addressing operation one or more data storage cells are read by applying an active pulse with the same polarization to each data storage cell and recording the output charge response. On basis thereof the output data in subsequent second addressing operation are copied onto preset data storage cells in another segment of the data storage apparatus, this segment being selected on the basis of its previous addressing history.
摘要:
An optoelectronic camera comprises an objective system formed by a number of optical active structures (L), particularly refractive structures in the form of microlenses or lenslets provided in an array. A detector device (D) is assigned to the lens array and comprises detectors (Dn) formed by sensor elements (E) which define pixels in the optical image. Each detector (Dn) defines a sample of the optical image and optimally all samples are used to generate a digital image. The optoelectronic camera may be realized as a color image camera, particularly for recording images in an RGB system. In a method for digital electronic formatting of an image recorded with the optoelectronic camera, zoom and pan functions are implemented in the camera.