摘要:
A cross linked high molecular weight polymer formed from a water soluble monomer or blend of monomers and which has IV and/or solubility and/or rheology properties indicating that it would be unsuitable for use as a flocculant can be used as a flocculant after shearing the polymeric material. The shearing may be applied to the polymeric material before addition to the suspension that is to be flocculated or can be applied to the suspensionthat is being flocculated. The shearing increases the intrinsic viscosity of the polymeric material and can improve its rheology and solubility. The polymeric material must be of high molecular weight.
摘要:
When flocculating an aqueous suspension of suspended solids using a high molecular weight synthetic polymeric flocculant, the shear stability of the flocs is increased if the polymeric material includes polymeric particles of below 10 .mu.m dry size. The flocculated solids can therefore be subjected to shear without increasing the amount of discrete suspended solids in the aqueous medium and generally they are subjected to shear by shearing the aqueous medium containing them, either before dewatering, generally on a centrifuge, piston press or belt press, or by continuously agitating them, for instance in a chemical reaction medium. The polymeric material is generally formed by mixing into water polymeric particles made by reverse phase or emulsion polymerization in the presence of added cross linking agent. Alternatively, particles insolubilized by insoluble monomer may be used. A reverse phase dispersion of water soluble polymer may be used if the particles remain undissolved, e.g. if they are added in the absence of an oil in water emulsifying agent.
摘要:
Measurement of the ionic value X of a solution of a polyelectrolyte after shearing, for instance by a rotating blade, and/or measurement of the ionic value Y of a solution of polyelectrolyte before shearing, and especially the difference between t he values X and Y, gives a useful indication of the degree of cross linking of the polyelectrolyte and so can be utilized to control the manufacture of the polyelectrolyte, for instance drying conditions, or the storage or use of the polyelectrolyte, for instance its suitability or dosage in a flocculation process.
摘要:
Particulate metal ore is pellitized by use of a novel polymeric binder that comprises aggregates of polymer particles and that have a size mainly above 100 .mu.m and the aggregates are disintegrated during the process.
摘要:
Water absorbent particulate polymers and their uses are described. Friable aggregates may be made by bonding substantially dry polymer particles with an aqueous liquid and drying the aggregates. These aggregates can be broken down to the individual polymer particles upon mixing with an aqueous medium and thus can have the flow properties of relatively coarse particles and the performance properties of relatively fine particles. They may be soluble nd used as flocculants or viscosifiers or binders for, for instance, iron ore pelletisation. Alternatively they may be swellable and insoluble, for instance for converting a sticky particulate mass (such as coal fines filter cake) to a crumbly solid. When pellets are formed by compression moulding from a crumbly solid made by mixing water absorbent polymer particles with a sticky mass of inorganic particles (such as a coal fines filter cake) improved properties are obtained when the absorbent polymer particles are introduced in the form of a dispersion in water-immiscible liquid.
摘要:
When flocculating an aqueous suspension of suspended solids using a high molecular weight synthetic polymeric flocculant the shear stability of the flocs is increased if the polymeric material includes polymeric particles of below 10 .mu.m dry size. The flocculated solids can therefore be subjected to shear without increasing the amount of discrete suspended solids in the aqueous medium and generally they are suspended to shear by shearing the aqueous medium containing them, either before dewatering, generally on a centrifuge, piston press or belt press, or by continuously agitating them, for instance in a chemical reaction medium. The polymeric material is generally formed by mixing into water polymeric particles made by reverse phase or emulsion polymerization in the presence of added cross linking agent. Alternatively particles insolubilized by insoluble monomer may be used. A reverse phase dispersion of water soluble polymer may be used if the particles remain undissolved, e.g. if they are added in the absence of an oil in water emulsifying agent.
摘要:
A water absorbent water insoluble polymeric element, such as a fibre, film, coating, bonding layer or foam, is made by forming a substantially linear polymer by polymerisation of water soluble ethylenically unsaturated monomer blends comprising carboxylic and hydroxylic monomers and then reacting the carboxylic and hydroxylic monomers in the linear polymer to form internal cross links within the polymer.
摘要:
Film or fibre is made from a polymer of water soluble ethylenically unsaturated monomeric material that includes ionic monomer by extrusion and stretching, and a counterionic lubricant compound is absorbed into the surface of the fibre or film before or during the stretching. The counterionic lubricant compound is also of use for providing a lubricated film on other extruded or comminuted elements of water swellable or water soluble polymeric material.
摘要:
A substantially dry, particulate polyacrylamide composition having reduced acrylamide monomer content is made by mixing amidase with coarse aqueous gel polymer particles, absorbing the amidase into the particles and subsequently drying the particles.
摘要:
Powdered polysaccharide may be made by spray drying an emulsion in a non-aqueous liquid of an aqueous solution of the polysaccharide. Spray dried polysaccharides are novel materials. At least 90% by weight of the particles may be within a size range of not more than 100 microns. The particles may have an average size between 50 and 250 microns or between 10 and 50 microns, and the finer particles can be redispersed into oil.