摘要:
Block placement within each device-containing layer is optimized under the constraint of a simultaneous optimization of interlayer connectivity between the device-containing layer and immediately adjacent device-containing layers. For each functional block within the device-containing layer, lateral heat flow is calculated to laterally adjacent functional blocks. If the lateral heat flow is less than a threshold value for a pair of adjacent functional blocks, placement of the functional blocks and/or interlayer interconnect structure array therebetween or modification of the interlayer interconnect structure array is performed. This routine is repeated for all adjacent pairs of functional blocks in each of the device-containing layers. Subsequently, block placement within each device-containing layer may be optimized under the constraint of a simultaneous optimization of interlayer connectivity across all device-containing layers. This method provides a design having sufficient lateral heat flow in each of the device-containing layers in a semiconductor chip.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
A three-dimensional computer processing chip stack that includes a host layer disposed on at least one other layer in the stack. The host layer includes cavities formed thereon for receiving chips pre-configured with heterogeneous properties relative to each other. The cavities are formed to accommodate the heterogeneous properties of the chips. The chips are joined to respective surfaces of the cavities, thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
A method for generating and implementing a three-dimensional (3D) computer processing chip stack plan that includes receiving system requirements from a plurality of clients, identifying common processing structures and technologies from the system requirements, and assigning the common processing structures and technologies to a layer in the 3D computer processing chip stack plan. The method also includes identifying uncommon processing structures and technologies from the system requirements and assigning the uncommon processing structures and technologies to a host layer in the 3D computer processing chip stack plan. The method further includes determining placement and wiring of the uncommon structures on the host layer, storing placement information in the plan, and transmitting the plan to manufacturing equipment. The manufacturing equipment generates and integrates both the layer including the common structures and technologies and the host layer including the uncommon structures and technologies to form the 3D computer processing chip stack.
摘要:
A semiconductor chip includes a plurality of multi-core clusters each including a plurality of cores and a cluster controller unit. Each cluster controller unit is configured to control thread assignment within the multi-core cluster to which it belongs. The cluster controller unit monitors various parameters measured in the plurality of cores within the multi-core cluster to estimate the computational demand of each thread that runs in the cores. The cluster controller unit may reassign the threads within the multi-core cluster based on the estimated computational demand of the threads and transmit a signal to an upper-level software manager that controls the thread assignment across the semiconductor chip. When an acceptable solution to thread assignment cannot be achieved by shuffling of threads within the multi-core cluster, the cluster controller unit may also report inability to solve thread assignment to the upper-level software manager to request a system level solution.
摘要:
A method for generating and implementing a three-dimensional (3D) computer processing chip stack plan that includes receiving system requirements from a plurality of clients, identifying common processing structures and technologies from the system requirements, and assigning the common processing structures and technologies to a layer in the 3D computer processing chip stack plan. The method also includes identifying uncommon processing structures and technologies from the system requirements and assigning the uncommon processing structures and technologies to a host layer in the 3D computer processing chip stack plan. The method further includes determining placement and wiring of the uncommon structures on the host layer, storing placement information in the plan, and transmitting the plan to manufacturing equipment. The manufacturing equipment generates and integrates both the layer including the common structures and technologies and the host layer including the uncommon structures and technologies to form the 3D computer processing chip stack.
摘要:
A semiconductor chip includes a plurality of multi-core clusters each including a plurality of cores and a cluster controller unit. Each cluster controller unit is configured to control thread assignment within the multi-core cluster to which it belongs. The cluster controller unit monitors various parameters measured in the plurality of cores within the multi-core cluster to estimate the computational demand of each thread that runs in the cores. The cluster controller unit may reassign the threads within the multi-core cluster based on the estimated computational demand of the threads and transmit a signal to an upper-level software manager that controls the thread assignment across the semiconductor chip. When an acceptable solution to thread assignment cannot be achieved by shuffling of threads within the multi-core cluster, the cluster controller unit may also report inability to solve thread assignment to the upper-level software manager to request a system level solution.
摘要:
Block placement within each device-containing layer is optimized under the constraint of a simultaneous optimization of interlayer connectivity between the device-containing layer and immediately adjacent device-containing layers. For each functional block within the device-containing layer, lateral heat flow is calculated to laterally adjacent functional blocks. If the lateral heat flow is less than a threshold value for a pair of adjacent functional blocks, placement of the functional blocks and/or interlayer interconnect structure array therebetween or modification of the interlayer interconnect structure array is performed. This routine is repeated for all adjacent pairs of functional blocks in each of the device-containing layers. Subsequently, block placement within each device-containing layer may be optimized under the constraint of a simultaneous optimization of interlayer connectivity across all device-containing layers. This method provides a design having sufficient lateral heat flow in each of the device-containing layers in a semiconductor chip.
摘要:
A computer program product for generating and implementing a three-dimensional (3D) computer processing chip stack plan. The computer readable program code includes computer readable program code configured for receiving system requirements from a plurality of clients, identifying common processing structures and technologies from the system requirements, and assigning the common processing structures and technologies to at least one layer in the 3D computer processing chip stack plan. The computer readable program code is also configured for identifying uncommon processing structures and technologies from the system requirements and assigning the uncommon processing structures and technologies to a host layer in the 3D computer processing chip stack plan. The computer readable program code is further configured for determining placement and wiring of the uncommon structures on the host layer, storing placement information in the plan, and transmitting the plan to manufacturing equipment. The manufacturing equipment forms the 3D computer processing chip stack.