Abstract:
An electro-optical system capable of being embarked aboard mobile ground or flying units, to determine the optical flow generated by obstacles in relative motion with respect to the mobile unit. The system comprises radiation emitter means (5), receiver means (1) for converting the radiation reflected by the objects into electrical signals and means (8) for processing the signals generated by the receiver means. The receiver means (1) are based on vision sensors with matrix configuration. The emitter means (5, 6) shape the radiation beam in such a way that the radiation reflected by the objects and collected by the receiver means impacts at least on a part of the receiver matrix. The processing means compute the optical flow only on the elements of the receiver matrix that are impacted by the radiation.
Abstract:
An optical element for the projection of a light beam comprises a solid body (1) of transparent material in which is formed a cavity (13) able to receive a light source (10), the cavity (13) extending along the principal axis (z) of the transparent body (1) and being delimited by a radially inner surface (3) and a terminal surface (2) of the transparent body (1). The surfaces (2, 3) are able to receive separate respective portions (I, II) of the light flux generated by the source (10). The transparent body (1) further has a radially outer surface (4) which surrounds the radially inner surface (3). The radially outer surface (4) reflects the portion of the light flux (I) coming from the radially inner surface (3) along a direction substantially parallel to the principal axis (z). The transparent body (1) has, on the opposite side, a central surface (6) and an annular surface (5) surrounding the central surface (6), able to receive that portion (II) of the light flux and the reflected portion of the light flux (I) respectively and to transmit these light flux portions (I, II) in directions having predetermined orientations with respect to the principal axis (z). At least one of the surfaces (2, 3, 5, 6) is rotationally asymmetric with respect to the principal axis (z) of the transparent body (1). The surfaces (2, 3, 5, 6) cooperate in such a way as to shape the overall light flux (I, II) emitted by the central and annular surfaces (6, 5) into a light intensity distribution having different divergences in two directions perpendicular to one another and to the principal axis (z).
Abstract:
A module for projecting a light beam comprises a light source and a substantially flat support surface on which the source is arranged in a manner such as to emit light from only one side of the surface, and a reflector for reflecting the light emitted by the source. The reflector comprises a curved reflecting surface which extends on one side of the support surface, has a concavity facing towards the support surface, and can reflect the light coming from the source in a principal direction substantially parallel to the support surface of the source. An optical device for a module according to the invention and a vehicle front light assembly comprising a plurality of modules according to the invention form further subjects of the invention.
Abstract:
An optical element and module for the projection of a light beam, and motor vehicle lamp including a plurality of such modules An optical element for the projection of a light beam comprises a solid body (1) of transparent material in which is formed a cavity (13) able to receive a light source (10), the cavity (13) extending along the principal axis (z) of the transparent body (1) and being delimited by a radially inner surface (3) and a terminal surface (2) of the transparent body (1). The surfaces (2, 3) are able to receive separate respective portions (I, II) of the light flux generated by the source (10). The transparent body (1) further has a radially outer surface (4) which surrounds the radially inner surface (3). The radially outer surface (4) reflects the portion of the light flux (I) coming from the radially inner surface (3) along a direction substantially parallel to the principal axis (z). The transparent body (1) has, on the opposite side, a central surface (6) and an annular surface (5) surrounding the central surface (6), able to receive that portion (II) of the light flux and the reflected portion of the light flux (I) respectively and to transmit these light flux portions (I, II) in directions having predetermined orientations with respect to the principal axis (z). At least one of the surfaces (2, 3, 5, 6) is rotationally asymmetric with respect to the principal axis (z) of the transparent body (1). The surfaces (2, 3, 5, 6) cooperate in such a way as to shape the overall light flux (I, II) emitted by the central and annular surfaces (6, 5) into a light intensity distribution having different divergences in two 25 directions perpendicular to one another and to the principal axis (z).
Abstract:
An optical system for image projection, particularly for projection devices of the “head-mounted” type, includes a display, an optical system for focusing an image formed by the display, and a light guide having an extended body, with two opposite, longitudinal, plane and parallel faces, and opposite ends which define first reflecting surface for coupling into the light guide and second reflecting surface for extracting the image from the light guide. Each light ray which propagates through the light guide undergoes at least three internal total reflections on the parallel plane faces of the light guide. At least a surface of the focusing optical system is a portion of a surface free of rotational symmetry axes. Moreover, the two reflecting surfaces of the light guide are portions of surfaces free of rotational symmetry axes. Finally, the inlet pupil of the light guide coincides with the outlet pupil of the focusing system.
Abstract:
The lighting device comprises a light source and an associated hollow reflector of transparent material having an internal surface and an external surface which are close to and far away from the source respectively. The inner surface of the reflector has in cross section at least one transverse plane passing through the source a discontinuous profile forming a plurality of adjacent steps each of which has a first face through which rays originating from the source can pass and a second face essentially parallel to the rays originating from the source. The outer surface of the reflector has a profile comprising one or more arcs of curves. The reflector is constructed and positioned in such a way that in the said transverse plane most of the rays emitted by the source are reflected through the first face of the steps on its inner surface and strike its outer surface undergoing total internal reflection and after passing back through the reflector emerge from it through the second faces of the steps on its inner surface undergoing a second refraction.
Abstract:
Interface system for assisting an operator during a work stage comprising a support structure wearable by the operator, with a transparent screen placed in front of the operator's eyes to permit him to see a portion of a background; a virtual image generator for producing an optical signal directed towards the operator's retina so as to form a virtual image at a predetermined distance from the operator's eyes and superimposed on the background; a recording device integral with the operator's head, to record part of the operator's visual field and make available a signal representative of the visual field; a processing device for processing the signal from the recording device and generating a visual information signal of use to the operator for carrying out the work stage; and a device of reception/transmission for sending the signal from the recording device to the processing device, and rendering the information signal to the virtual image generator.
Abstract:
A display arrangement for a vehicle instrument panel comprises a wearable support structure on which is disposed a transparent screen positioned in front of an eye of an user to permit part of the background to be seen through this screen; a virtual image generator disposed on the support to generate a virtual image and present it to the user's eyes at a predetermined distance and superimposed over the scene visible through the transparent screen; a device for detecting the position and orientation of the user's head; and a processor connected to vehicle control systems to provide the virtual image generator with a video signal containing information to deliver to the user on the basis of system signals provided by the control systems in such a way that the virtual image generator generates virtual visual information superimposed over the background in predetermined regions of the field of view. The visual information is fixedly located in relation to a frame of reference on the basis of a signal provided by the detection device.
Abstract:
A light concentrator is described, for a device for the conversion of solar radiation into electrical, thermal or chemical energy, capable of conveying the radiation towards a surface of the conversion device. The concentrator comprises at least one portion of Fresnel lens of rotational symmetry, one face of which has a plurality of crests disposed concentrically about a center so as to form a segmented transverse profile of the portion of Fresnel lens. The profile is formed in such a manner that the focal distance of the Fresnel lens is variable in dependence on the radial distance from the center of the lens. The variation of the focal distance is determined such that, when the Fresnel lens is illuminated by polychromatic radiation, the superposition of the distributions of irradiance, produced by the lens at the individual wavelengths constituting the spectrum of the incident radiation, generates a substantially uniform distribution of polychromatic irradiance on the conversion device.
Abstract:
Described herein is a transparent-display device for motor vehicles, to be used for presentation of information to the driver and/or to the passengers, said device comprising a plurality of LED sources, addressable individually or in groups through a series of conductive paths, deposited on a transparent underlayer and connected to a control electronics, in which: i) said LED sources are integrated in the form of dice, i.e., of elements obtained by dividing up a semiconductor wafer and without package; ii) said dice are integrated on, and electrically connected to, said underlayer via technologies of the chip-on-board type; and iii) said transparent underlayer 1 is pre-arranged for being at least in part superimposed on the windscreen of the vehicle, in such a way that at least part of the information presented to the user is superimposed on the background, said background being visible to the user through said windscreen.