摘要:
Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
摘要翻译:公开了用于氢气检测的方法和Pd / V 2 O 5装置。 制备用于广泛响应范围的氢气的化学色谱检测的改进的传感器的示例性方法在暴露和除去氢气时重复的着色/漂白循环期间显示出稳定性。 该方法可以包括提供基底。 该方法还可以包括在用于形成在所述衬底上的Pd / V205氢传感器中沉积用作H2插入主体的V205层。 该方法还可以包括在所述V205层上沉积Pd层; 所述Pd层用作光调制器。
摘要:
A sensor structure for chemochromic optical detection of hydrogen gas over a wide response range, that exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas, comprising: a glass substrate (20); a vanadium oxide layer (21) coated on the glass substrate; and a palladium layer (22) coated on the vanadium oxide layer.
摘要:
Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
摘要翻译:公开了用于氢气检测的方法和Pd / V 2 O 5装置。 制备用于广泛响应范围的氢气的化学色谱检测的改进的传感器的示例性方法在暴露和除去氢气时重复的着色/漂白循环期间显示出稳定性。 该方法可以包括提供基底。 该方法还可以包括在用于形成在所述衬底上的Pd / V205氢传感器中沉积用作H2插入主体的V205层。 该方法还可以包括在所述V205层上沉积Pd层; 所述Pd层用作光调制器。
摘要:
An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO3 layer coated on the substrate; and a palladium layer coated on the water-doped WO3 layer.
摘要:
An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.
摘要:
A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.
摘要:
Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).
摘要:
The present invention discloses an amorphous material comprising nickel oxide doped with tantalum that is an anodically coloring electrochromic material. The material of the present invention is prepared in the form of an electrode (200) having a thin film (202) of an electrochromic material of the present invention residing on a transparent conductive film (203). The material of the present invention is also incorporated into an electrochromic device (100) as a thin film (102) in conjunction with a cathodically coloring prior art electrochromic material layer (104) such that the devices contain both anodically coloring (102) and cathodically coloring (104) layers. The materials of the electrochromic layers in these devices exhibit broadband optical complimentary behavior, ionic species complimentary behavior, and coloration efficiency complimentary behavior in their operation.
摘要:
Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.
摘要:
A method (100) is provided for synthesizing a thin film electrode (350) such as an electrochromic (EC) electrode (426) or counter electrode (434) for an EC device (410), a lithiated film of transition metal oxide (616) for a battery device (600), or the like. The method (100) includes providing (140) a source material (322) within a deposition chamber (310) such as a target for sputtering, and the source material (322) includes a transition metal oxide and ionic lithium. The method (100) continues with positioning (140) an electrically conductive substrate (340) with an exposed surface within the deposition chamber (310). A thin film (350) of the transition metal oxide and the ionic lithium is deposited upon the exposed surface of the substrate (340) using physical vapor deposition with the source material (322) to form in a single deposition step a layer of lithiated transition metal oxide (350).