摘要:
A device for detecting ionizing radiation includes a radiation interaction region configured to generate light in response to an interaction with the ionizing radiation, an optical gain medium region in optical communication with the radiation interaction region and configured to amplify the light, and an energy source coupled to the optical gain medium region and configured to maintain a state of population inversion in the optical gain medium region. The optical gain medium region has an emission wavelength that corresponds with a wavelength of the light generated by the radiation interaction region.
摘要:
A method for stabilizing the gain of a PET detection system with a cooling unit includes: determining the temperature of at least one component of the PET detection system, comparing the actual gain with a reference value, and actuating the cooling unit to influence the temperature such that the gain tends to the reference value. In at least one embodiment, the reference value is determined by determining the temperature of the at least one component during a test measurement, determining the gain during the test measurement, determining a functional dependence of the gain on the temperature, and selecting the reference value based on the gain to be stabilized. Advantageously, in at least one embodiment the gain can be kept constant using the described method in a simple manner, with the influence of the temperature of the components being taken into account.
摘要:
APD-based PET modules are provided for use in combined PET/MR imaging. Each module includes a number of independent, optically isolated detectors. Each detector includes an array of scintillator (e.g. LSO) crystals read out by an array of APDs. The modules are positioned in the tunnel of a MR scanner. Simultaneous, artifact-free images can be acquired with the APD-based PET and MR system resulting in a high-resolution and cost-effective integrated PET/MR system.
摘要:
A method is disclosed for stabilizing the gain of a PET detection system with a cooling unit. The method includes determining the temperature of at least one component of the PET detection system, comparing the actual gain with a reference value, and actuating the cooling unit to influence the temperature such that the gain tends to the reference value. In at least one embodiment, the reference value is determined by determining the temperature of the at least one component during a test measurement, determining the gain during the test measurement, determining a functional dependence of the gain on the temperature, and selecting the reference value based on the gain to be stabilized. Advantageously, in at least one embodiment the gain can be kept constant using the described method in a simple manner, with the influence of the temperature of the components being taken into account.
摘要:
In a magnetic resonance device having a PET unit for acquiring positron emission tomography data and a gradient coil, the PET unit includes a carrier tube on which at least one PET detector is arranged. In at least one embodiment, the carrier tube is arranged inside the gradient coil and is displaceably mounted in such a way that access to the PET detector is made possible by its displacement. This allows easy access to the PET detector during maintenance activities.
摘要:
A facility is disclosed for cooling a detection device. In at least one embodiment, the facility includes at least one first cooling unit, through which a thermal contact to the detection device is able to be established and through which heat arising during operation of the detection device is able to be removed; and at least one second cooling unit, which is arranged so that heat from the environment of the detection device can be discharged through it. In at least one embodiment, this has the advantage of largely shielding the first cooling unit from incident heat which allows the detection device to be efficiently cooled.
摘要:
An automated blood sampling system for PET imaging applications that can be operated in or very near to the field of view (FOV) of an MR scanner, such as in a combined MR/PET imaging system. A radiation detector uses APDs (avalanche photo-diodes) to collect scintillation light from crystals in which the positron-electron annihilation photons are absorbed. The necessary gamma shielding is made from a suitable shielding material, preferably tungsten polymer composite. Because the APDs are quite small and are magnetically insensitive, they can be operated in the strong magnetic field of an MR apparatus without disturbance.
摘要:
An energy storage device includes, in combination: a vehicle adapted for propulsion via energy supplied by an operator, the vehicle having a pedal crank and a coaster brake hub disposed about an axle of a wheel of the vehicle, the pedal crank and the coaster brake hub being disposed in operable communication for transmitting energy from the pedal crank to the coaster brake hub and thence to the wheel; an energy storage device for selectively storing energy and selectively applying the stored energy, the energy storage device being disposed in operable communication with the pedal crank for transmitting energy from the pedal crank to the energy storage device for storage of the energy, and the energy storage device being disposed in operable communication with the coaster brake hub for selectively transmitting stored energy from the energy storage device to the coaster brake hub; and, combining device for differentially combining instant energy supplied by the operator and the energy storage device so that the energy applied to the coaster brake hub is essentially the sum of the instant energy supplied by the operator and the energy storage device.
摘要:
An automated blood sampling system for PET imaging applications that can be operated in or very near to the field of view (FOV) of an MR scanner, such as in a combined MR/PET imaging system. A radiation detector uses APDs (avalanche photo-diodes) to collect scintillation light from crystals in which the positron-electron annihilation photons are absorbed. The necessary gamma shielding is made from a suitable shielding material, preferably tungsten polymer composite. Because the APDs are quite small and are magnetically insensitive, they can be operated in the strong magnetic field of an MR apparatus without disturbance.
摘要:
A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.