摘要:
Methods are provided for detecting the formation of complexes of molecules, especially proteins, in a sample, such as a cell or tissue lysate. In one aspect, a cleaving probe specific for a first protein in a complex and one or more binding compounds specific for one or more second proteins in a complex are provided. Upon binding, the cleaving probe is induced to generate an active species, such as singlet oxygen, that cleaves molecular tags attached to the binding compounds only in the local region of the cleaving probe. The released molecular tags are separated from the assay mixture and from one another to provide a readout that is related to the number and types of proteins present in the complex.
摘要:
Families of compositions are provided as labels, referred to as eTag reporters for attaching to polymeric compounds and assaying based on release of the eTag reporters from the polymeric compound and separation and detection. For oligonucleotides, the eTag reporters are synthesized at the end of the oligonucleotide by using phosphite or phosphate chemistry, whereby mass-modifying regions, charge-modifying regions and detectable regions are added sequentially to produce the eTag labeled reporters. By using small building blocks and varying their combination large numbers of different eTag reporters can be readily produced attached to a binding compound specific for the target compound of interest for identification. Protocols are used that release the eTag reporter when the target compound is present in the sample.
摘要:
Probe sets for the multiplexed detection of known, selected nucleotide target sequences are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or “e-tag probes”, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. The target-binding moiety of the e-tag probes hybridizes to complementary target sequences followed by nuclease cleavage of the e-tag probes and release of detectable e-tags or e-tag reporters. The mixture is exposed to a capture agent which binds uncleaved and/or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
摘要:
Electrophoretic probes comprising fluorescent compounds as detection groups and mobility modifiers are disclosed for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. In one embodiment, detection involves the release of identifying tags as a consequence of target recognition. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters. Typically, uncleaved or partially cleaved e-tag probes are removed and the mixture of e-tag reporters is separated by any technique that provides for separation by mass or mass to charge ratio and the like and detected to provide for target identification.
摘要:
Kits for the multiplexed detection of known, selected nucleotide target sequences are provided. Detection involves the release of identifying tags as a consequence of target recognition. The kits include sets of electrophoretic tag probes or e-tag probes, capture agent and optionally a nuclease. The e-tag probes comprise a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. In using the kits, the target-binding moiety of the e-tag probes hybridizes to complementary target sequences followed by nuclease cleavage of the e-tag probes and release of detectable e-tags or e-tag reporters. The mixture is exposed to a capture agent which binds uncleaved and/or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
摘要:
Methods and kits are disclosed for determining, either in a homogeneous or heterogeneous assay format, one or more target analytes in a sample using binding compositions coupled to molecular tags by cleavable linkages. Generally, an assay mixture is formed comprising a sample and a reagent comprising multiple such binding compositions under conditions that permit stable complexes to form between the binding compositions and analytes. In one aspect of the invention, the interaction between the binding compositions and their respective binding sites brings a cleavage-inducing moiety into close proximity to cleavable linkages or provides a recognizable substrate for a cleavage-inducing moiety. In this way, one or more molecular tags for each of the analytes are released from the complexes. Released molecular tags are chromatographically separated and the presence and/or amount of the target analytes are determined based on the analysis of the released and separated molecular tags.
摘要:
Probe sets for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The probe sets include electrophoretic tag probes or e-tag probes, comprising a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. Target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
摘要:
Families of compositions are provided as labels, referred to as eTag reporters for attaching to polymeric compounds and assaying based on release of the eTag reporters from the polymeric compound and separation and detection. For oligonucleotides, the eTag reporters are synthesized at the end of the oligonucleotide by using phosphite or phosphate chemistry, whereby mass-modifying regions, charge-modifying regions and detectable regions are added sequentially to produce the eTag labeled reporters. By using small building blocks and varying their combination large numbers of different eTag reporters can be readily produced attached to a binding compound specific for the target compound of interest for identification. Protocols are used that release the eTag reporter when the target compound is present in the sample.
摘要:
Kits for the multiplexed detection of the binding of, or interaction between, one or more ligands and target antiligands are provided. Detection involves the release of identifying tags as a consequence of target recognition. The kits include sets of electrophoretic tag probes or e-tag probes, a capture agent and optionally a cleaving agent. The e-tag probes comprise a detection region and a mobility-defining region called the mobility modifier, both linked to a target-binding moiety. In using the kits, target antiligands are contacted with a set of e-tag probes and the contacted antiligands are treated with a selected cleaving agent resulting in a mixture of e-tag reporters and uncleaved and/or partially cleaved e-tag probes. The mixture is exposed to a capture agent effective to bind to uncleaved or partially cleaved e-tag probes, followed by electrophoretic separation. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification.
摘要:
Oligonucleotides with a novel sugar-phosphate backbone containing at least one internucleoside 3′-NHP(O)(S−)O-5′ linkage, and methods of synthesizing and using the inventive oligonucleotides are provided. The inventive thiophosphoramidate oligonucleotides were found to retain the high RNA binding affinity of the parent oligonucleotide N3′→P5′ phosphoramidates and to exhibit a much higher acid stability.