摘要:
A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
摘要:
A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
摘要:
The present invention relates a metal passivator additive comprising: a rare earth component; alumina; clay; colloidal silica; and a zeolite having high silica to alumina ratio. The present invention also relates to a process for preparing a metal passivator additive, said process comprising: preparing a rare earth slurry by mixing rare earth component with water; obtaining an alumina gel by treating alumina slurry with an acid, wherein the alumina slurry is prepared by mixing alumina and water; mixing the alumina gel and the rare earth slurry to obtain a slurry mixture; adding a colloidal silica to the slurry mixture; preparing a clay slurry by mixing clay and a dispersant; combining the clay slurry and the slurry mixture to obtain a rare earth-binder-filler slurry; obtaining an additive precursor slurry by mixing a zeolite having high silica to alumina ratio to the rare earth-binder-filler slurry; spray-drying the additive precursor slurry to obtain a spray-dried product; and calcining the spray-dried product to obtain the metal passivator additive.
摘要:
The present invention relates a metal passivator additive comprising: a rare earth component; alumina; clay; colloidal silica; and a zeolite having high silica to alumina ratio. The present invention also relates to a process for preparing a metal passivator additive, said process comprising: preparing a rare earth slurry by mixing rare earth component with water; obtaining an alumina gel by treating alumina slurry with an acid, wherein the alumina slurry is prepared by mixing alumina and water; mixing the alumina gel and the rare earth slurry to obtain a slurry mixture; adding a colloidal silica to the slurry mixture; preparing a clay slurry by mixing clay and a dispersant; combining the clay slurry and the slurry mixture to obtain a rare earth-binder-filler slurry; obtaining an additive precursor slurry by mixing a zeolite having high silica to alumina ratio to the rare earth-binder-filler slurry; spray-drying the additive precursor slurry to obtain a spray-dried product; and calcining the spray-dried product to obtain the metal passivator additive.
摘要:
The present disclosure provides a ready-to-use seed composition water, a source of silica, a source of alumina, and Na20, wherein the molar ratio of H20:Na20 ranges from 5 to 20, Na20:SiO2 ranges from 0.4 to 5 and SiO2:Al203 ranges from 1.3 to 5 used in the preparation of a synthetic faujasite zeolite which has high thermal stability and higher crystallite size. It further provides a process for preparing the ready-to-use seed composition for preparation of synthetic faujasite zeolite that requires lower crystallization time. The present disclosure provides a seed composition that does not require maturing time and a reaction gel composition that has low water and soda content. The present disclosure further provides a process for the preparation of synthetic faujasite zeolite by blending seed and reaction gel reaction composition to form a seed gel composition and subjecting it to crystallization.
摘要:
The present invention relates to a cracking catalyst composition for cracking heavy hydrocarbon and processes for preparing the catalyst. The process can include treating zeolite with sodium free basic compound with or without phosphate, treating an alumina with a dilute acid, acidifying a colloidal silica, preparing a fine slurry of clay with a source of phosphate, adding alumina slurry and/or acidified colloidal silica to clay phosphate slurry, adding treated zeolite and spray-drying the slurry and calcining the same to obtain a cracking catalyst having adequate ABD and attrition resistance property.
摘要:
The present invention relates to a process for enhancing the yield of molecular sieve zeolite during the synthesis from a sodium aluminosilicate reaction mixture, said process comprising the step of adding at an intermediate stage of crystallization a source of aluminum to the sodium aluminosilicate reaction mixture and allowing the mixture to crystallize.
摘要:
The present invention relates to a cracking catalyst composition for cracking heavy hydrocarbon and processes for preparing the catalyst. The process can include treating zeolite with sodium free basic compound with or without phosphate, treating an alumina with a dilute acid, acidifying a colloidal silica, preparing a fine slurry of clay with a source of phosphate, adding alumina slurry and/or acidified colloidal silica to clay phosphate slurry, adding treated zeolite and spray-drying the slurry and calcining the same to obtain a cracking catalyst having adequate ABD and attrition resistance property.
摘要:
The present invention relates to a process for enhancing the yield of molecular sieve zeolite during the synthesis from a sodium aluminosilicate reaction mixture, said process comprising the step of adding at an intermediate stage of crystallization a source of aluminum to the sodium aluminosilicate reaction mixture and allowing the mixture to crystallize.
摘要:
The present invention relates to an improved process for obtaining sodium silicate alkali solution depleted of sodium salt and enriched in silica from a mother liquor recovered after isolation of molecular sieves and more particularly, the present invention relates to a process for recycling mother liquor obtained after the isolation of molecular sieves for the preparation of fresh molecular sieves or as a binder for producing Fluid Catalytic Cracking (FCC) catalyst.